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Abstract
Combinatorial optimization problems are challenging, especially in the real 
world. Several heuristics could be utilized to solve them. These heuristics 
differ in their characteristics and solutions found to the problems. One 
example of the real-world problem was the picking and distribution of 
face shields at the beginning of the Covid-19 pandemic. Solutions to this 
problem were needed every day to arrange their picking and distribution. 
This problem was modelled as a team orienteering problem. Accordingly, 
heuristics might be used to solve it. These heuristics might be modified to 
handle instances of large problems and the stochasticity of different data 
input. This chapter presents the basics of the team orienteering problem and 
two heuristics used to solve it. Python might be used to realize the heuristics 
and run experiments to compare the heuristics.

Keywords
Team orienteering problem, heuristics, GRASP, savings-based heuristic, lo­
gistics, healthcare logistics

Overview

The Internet of Things (IoT) has been a rapidly expanding technology at the 
industrial level. Nowadays, a network of objects is surrounded by electro­
nic systems, software, sensors, and network connectivity, which enable the 
collection, storage, and exchange of large data. This network requires opti­
mal data management systems that enable the efficient operation of physical 
processes. In transportation logistics, more and more systems are being used 
that automatically monitor vehicle movement, location, status, among other 
parameters, and generate alerts or make intelligent decisions about them. 
Solving problems in transportation and logistics is a challenging task today. 
These problems might be formulated as combinatorial optimization pro­
blems. In a combinatorial optimization problem, the search space consists 
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of a finite space of elements. These elements are selected and arranged in 
a solution. The number of potential solutions increases exponentially with 
the number of elements in the search space.

In order to solve combinatorial optimization problems, several heu­
ristics could be utilized. As a result, an optimum or promising solution 
might be identified depending on the problem and the heuristic. For 
example, an optimum solution could be guaranteed for small problems. 
However, for large problems, a promising solution might be identified.

Solving a combinatorial optimization problem becomes challenging if 
real-time problems are being solved. For example, the integration of the 
Internet of Things (IoT). In this case, a solution should be recommended 
within a small time window, immediately. Agile optimization concepts are 
utilized to handle these problems.

In this chapter, a real case study is presented. This case study appeared 
at the beginning of the Covid-19 pandemic because of the shortage of 
face shields. Volunteers printed these shields using their 3D printers, and 
other volunteers registered to pick up these printed items. This problem 
is an example of IoT integration and was a challenging task because the 
decisions were to be made by the following day to assign routes for each 
volunteer driver. The number of drivers varied from one day to another. To 
solve this problem, several heuristics might be used. Their performance was 
evaluated and compared. As a result, students can compare the performance 
of different heuristics using a real-world case study.

Didactic Fundamentals

Target Group
The course has been designed for a lecture on analytics for bachelor’s or 
master’s students in industrial engineering, statistics, and logistics.

Prerequisites
Basic knowledge of programming, analytical capabilities, applied optimiza­
tion, data plotting, scientific paper reading, and report writing is required.

Learning Resources
Learning materials involve presentations and videos, reading, and exercises. 
These materials are uploaded onto a Moodle learning platform. In the 
following sections, the basics related to this use case are presented.

1.1

1.1.1

1.1.2

1.1.3
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Learning Objectives and Competence

Learning outcomes in this chapter based on Bloom’s taxonomy and lab-spe­
cific psychomotor skill extensions are:
• Remember

• Students should remember and define the team orienteering problem 
(TOP).

• Students should be able to reproduce program codes to solve the TOP.
• Understand

• Students should distinguish between different methods used to solve 
the TOP.

• Students should report their findings in a short report.
• Apply

• Students should apply the GRASP heuristic learned to solve the TOP’s 
instances.

• Analyze
• Students should analyze the results obtained and compare the perfor­

mance of heuristics in different experiments.
• Evaluate

• Students should evaluate their code and modify it.
• Create

• Students should be able to describe their results in a report.
• Specific psychomotor skills provided through lab-elements

• Students will learn how to establish their Python program to solve the 
TOP.

• Students will learn how to evaluate a heuristic used to solve the TOP.

Use Case

User Story

Martha is an expert in Operations Research who lives in Barcelona and 
is worried about the growing number of Covid-19 cases in this region 
and the increasing burden they are placing on healthcare centers. Her bro­
ther, Michael, who is a doctor and works long shifts in a hospital, has 
told her about shortages of protective elements such as face shields, ear 

1.2
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savers, door openers, and similar sanitary items. Although these elements 
were not frequently used before the pandemic, the crisis caused healthcare 
staff to require extra protection, increasing the demand for such elements 
unexpectedly. Michael and his colleagues in the hospital knew about an 
initiative called “Coronamakers”, or simply “Makers”. This initiative is a new 
community of people who have 3D printers at their respective houses and 
volunteered to provide these items to hospitals and healthcare centers.

Nevertheless, once the hundreds of volunteers in the surrounding area 
of Barcelona guaranteed the protective items’ production, a logistics prob­
lem arose: volunteers were unable to deliver the printed elements by them­
selves, given both the lockdown restrictions and a large number of items. 
Hence, only a few external vehicles were able to visit Makers’ houses to 
collect the 3D-printed items and deliver them to healthcare centers. During 
a conversation about this problem between Martha and Michael, she told 
him about some math and computational tools she had employed to sol­
ve similar problems in the past. She explained to him that, in general, 
these tools are called heuristics, and they provide fast and good solutions 
to transportation, manufacturing, and other complex problems. Therefore, 
heuristics are quite suitable to solve the logistics problem since, although 
they are not capable of providing optimal solutions, the speedy growth in 
Covid-19 cases required good-quality solutions that could be obtained in a 
short time (minutes or seconds).

Immediately after this conversation, Martha and Michael contacted the 
Makers. Martha offered to solve this logistics problem, together with her re­
search group at Super open University. Moreover, Michael recruited a group 
of six friends who worked as volunteer drivers. All the friends expressed 
their willingness to join this project and claimed to be ready once Michael 
and Martha indicated both the Makers’ houses that each driver should visit 
and the sequence in which these visits had to be carried out. Hence, this was 
a real and complex problem that Martha’s research group had to solve by 
defining collection routes to maximize the number of items collected.

Martha’s group needed to consider a series of conditions or constraints 
that had to be met to keep the computational model as realistic as possible. 
Firstly, all the Makers’ houses and the healthcare centre locations were iden­
tified using Cartesian coordinates. Secondly, the drivers’ time was limited, 
i.e., each route could not exceed a maximum number of hours per day due 
to curfew hours during the pandemic period. Given both these constraints 
and the limited number of volunteer drivers, the drivers might not visit 
all the Makers on the same day. Therefore, an additional decision had to 
be made regarding which Makers should be visited. Fortunately, since this 
case represents a daily challenge, Martha knew that Makers who were not 
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visited on a particular day could be visited on the following days. Thirdly, 
vehicles were considered virtually unlimited in capacity since the size of the 
items to be transported was small. Finally, both the travel times between the 
locations and the visiting time in each house were known. The former is 
the time taken to travel between any pair of houses or healthcare centres. 
The latter is the time spent by the driver in carrying out a collection at each 
house.

After a short discussion with her colleagues at the research group, Mar­
tha concluded that this real-world problem should be modelled as the Team 
Orienteering Problem (TOP). Two reasons led to this decision: the TOP 
allowed some houses to be skipped, given the strict time limit; and the 
TOP’s typical objective maximized the total reward collected after visiting 
the houses. In this case, it was so obvious to Martha’s group that the reward 
each Maker offered was the number of 3D-printed items to be collected.

Tasks

Tasks for students:
• Formulate the TOP to be solved by Martha and her colleagues:

• Define decision variables
• Define the objective’s function
• Define the constraints

• Propose more than one heuristic to solve the problem
• Implement the heuristics using Python
• Run experiments and compare the heuristics based on the results obtai­

ned

Team Orienteering Problem

The TOP is derived from the orienteering problem (OP), an outdoor sport 
practiced in a mountainous area, where a player has a compass and a map. 
The player starts at a specific checkpoint from which he/she has to visit as 
many checkpoints as possible within a set time limit and finally return to 
the starting point. Each checkpoint has a score associated with it, so the 
game’s objective is to maximize the total score. As the time to return to the 
starting point is limited, not all checkpoints can be visited. Therefore, the 
player must select the checkpoints with the highest contribution to his/her 
total score (Chao et al., 1996). The OP is an NP-hard problem that can be 
considered a combination of the knapsack problem and the travelling sales­
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man problem (TSP) (Vansteenwegen et al. 2011). The knapsack problem is 
an optimization problem in which a number of items are placed inside a 
fixed-size knapsack. The items have a given weight, and the objective is to fit 
as many items as possible into the knapsack given the weight constraint on 
it (Salkin & De Kluyver, 1975). The TSP is an optimization problem with a 
given list of cities and distances between each pair of cities, and the objective 
is to find the shortest possible route that allows the players to visit each city 
exactly once and return to the origin city (Flood, 1956). When the game 
is extended from a single individual to teams of two or more players, it is 
called TOP. Each team member must visit as many selected checkpoints as 
possible within a given time and, then, return to the starting point. Thus, 
each checkpoint is visited once, and the total score is maximized (Chao et al. 
1996).

The TOP was modelled by Chao et al. (1996) as a multi-level optimizati­
on problem. In the first level, the nodes to be visited are selected. In the 
second level, the selected nodes are assigned to the vehicles in the fleet. 
Finally, the construction of the routes for each vehicle is done on the third 
level. According to Gunawan et al. (2016), the TOP can be mathematically 
defined as a set of nodes N =   1, . . . , N  , where each node i ∈ N   is asso­
ciated with a non-negative reward, ri . The start node and the end node are 
described by node 1 and N  , respectively. The objective function of the TOP 
maximizes the total reward collected from selected nodes by determining 
routes that are limited by a given time budget, Tmax , and the time between 
nodes i  and j  is tij . It is assumed that rewards can be added and that each 
node can be visited once at most.

The problem is formulated as an integer programming model with the 
following decision variables: xij = 1  if a visit of node i  is followed by the 
visit of node j , otherwise it is 0; and ui  is used in subtour elimination 
constraints and allows the position of the nodes visited in the route to be 
determined (cf. Gunawan et al. 2016); subtours represent round tours. The 
objective’s function maximizes the total rewards collected (Equation. 1). The 
constraints (cf. Gunawan et al. 2016) ensure that: (i) routes start from node 1 
and end at node N   (Equation 2); (ii) the connectivity of routes guarantees 
that each node is visited once at most (Equation 3); (iii) the total travel time 
is limited by Tmax  (Equation 4); (iv) subtours are prevented (Equations 5 and 
6).
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Maximize ∑i = 2N − 1∑j = 2N rixij  (1)

subject to:  ∑j = 2N x1j  =   ∑i = 2N − 1xi N = 1   (2)

i = 2N − 1xik = j = 2N xkj ≤ 1;  ∀k  = 2,   . . . .   N − 1   (3)

i = 2N − 1 j = 2N tijxij ≤ Tmax  (4)2 ≤ ui ≤ N ;  ∀i  =  2, . . . , N   (5)ui −  uj +  1 ≤ N − 1 1 − xij  ;   ∀i  =  2, . . . , N   (6)

  
Heuristic 1: Greedy Randomized Adaptive Search

The greedy randomized adaptive search procedure (GRASP) is the first 
heuristic described to solve the TOP. It belongs to trajectory methods based 
on using a single solution and seeing how it evolves or when the number 
of iterations increases. The basic concepts and key information on Python 
implementation of GRASP are presented below.

GRASP Basic Concepts

GRASP is a metaheuristic and a global optimization algorithm. The soluti­
on strategy consists of an iterative random sampling of greedy stochastic 
solutions and the use of a local search heuristic to refine them to a locally 
optimal solution (Feo & Resende, 1995). Conceptually, GRASP is composed 
of two phases: (i) the intelligent construction of an initial solution through 
the greedy lexical function, and (ii) a local search near the constructed 
solution to find an improvement. Throughout the process, the best global 
solution is maintained. Feo & Resende (1995) present the basic generic 
pseudocode of a generic GRASP as shown in Figure 1. The first two lines 
correspond to the inputs of the problem. After that, the iterative process 
occurs between lines 3 and 9. Lines 4 and 5 are the GRASP construction and 
local search phases, respectively (detailed in Figures 2 and 3). This process is 
iterative and checks whether the solution generated is better than the best 
solution found. Accordingly, the best solution is updated as is shown in 
lines 6 to 8. Finally, the iterative process ends if a stopping criterion is met, 
such as the maximum number of iterations is reached, and the best solution 
is returned.

4

4.1
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Procedure GRASP (MAX_ITERATIONS, SEED)
1 Best_solution = 0;
2 Read_Input();
3 for k=1,2,..., MAX_ITERATIONS Do
4 Solution = Greedy_Randomized_Construction (SEED);
5 Solution = Local_Search(Solution);
6 If Solution is better than Best_solution Then
7 UpdateSolution(Solution, Best_solution);
8 end if
9 end for
10 return (Best_solution);

end GRASP

Pseudocode of a generic GRASP based on Feo & Resende (1995)

Figure 2 presents the pseudocode of the greedy randomized construction, 
which utilizes uniform randomization to select the most promising ele­
ments of a restricted list of candidates. The restricted list of candidates 
includes solution elements and restricts the characteristics of elements that 
can be selected in each iteration. The number of selected elements from the 
lists might be constrained by a pre-specified number (n ) or a percentage of 
the number of elements in the list. A logical type of behaviour is defined 
to guarantee a random selection of elements from the list to explore a 
solution space. This list is sorted from the most promising element to the 
least promising one based on their effect on the objective’s function. Each 
item in the list is assigned a probability (p ) of being selected. Then, this list 
is reduced, considering the n  of most promising elements.

Figure 1:
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Procedure GreedyRandomizedConstruction (SEED)
1 Solution = 0;
2 Sort the candidate elements according to their incremental costs;
3 while solution is not complete Do
4 Build the Restricted Candidate List;
5 Select from the Restricted Candidate List and element v at random;
6 Solution = Solution ⋃ {v};
7 Re-sort the candidate elements according to their incremental costs;
8 end while
9 return (Solution);

end GreedyRandomizedConstruction

Pseudocode of a generic GRASP construction phase based on Feo & Re­
sende (1995)

Procedure LocalSearch(Solution)
1 while Solution is not locally optimal Do
2 Find s’ ∈ N such that f(s’) ≤ f(Solution);
3 Solution = s’;
4 end while
5 return (Solution);

end LocalSearch

Pseudocode of a generic local search phase based on Feo & Resende 
(1995)

The greedy randomized construction starts by initializing a solution in line 
1 of the pseudocode in Figure 2. In the loop between lines 3 and 9, one 
feasible solution is iteratively constructed by selecting one element from the 
list at a time. First, the restricted list of candidates is constructed in line 4. 
Then, a candidate from the list is randomly selected in line 5 and added to 
the solution in line 6. At each construction iteration, the choice of the next 
node is determined by sorting nodes in a candidate list with respect to a 
greedy function. This function measures the reward of selecting each node. 
The heuristic is adaptive because the rewards associated with each node 
are updated at each iteration of the construction phase to reflect changes 

Figure 2:

Figure 3:
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brought by selecting the previous node. The probabilistic component of 
selecting the best candidates does not always select the best one because its 
behavior is entirely random. Finally, the effect of the selected node on the 
reward is calculated, and the greedy function is adapted in line 7.

Figure 3 presents the pseudocode of the generic local search phase, 
which is used to improve constructed solutions. The local search algorithm 
works iteratively by successively replacing the current solution with a better 
solution in its neighborhood. It terminates when no better solution in the 
neighborhood is found. Its effectiveness is based on the proper choice of 
a neighborhood’s structure, efficient neighborhood search techniques, and 
the starting solution. Thus, the neighborhood structure for a given problem 
relates a solution to the problem to a subset of solutions based on each 
solution. A solution is then considered locally optimal if there is no better 
solution in that subset of solutions.

Key Information for Python Implementation

The implementation of the GRASP heuristic in Python is based on those 
made by Jason Brownlee1 and Sain Panyam2. Using the well-known instance 
called berlin52 is recommended3. The parameters to be set to find the best 
solution, for instance, are the maximum number of iterations (outer loop), 
the maximum number of iterations without improvement, and the greedy 
factor, the percentage of the elements in the sorted list to be considered by 
the algorithm.

Implementing the local search in the GRASP might be formulated as 
a nested loop and generates new solutions based on a stochastic operator. 
This operator selects non-consecutive edges and swaps them to obtain new 
connections between the edges, calculating the Euclidean distance between 
them. Then, it reverses the edges between them to complete the path. The 
local search keeps track of the best solution and the new solution. Minor 
modifications are applied to the original solution, and if the new solution 
with those changes is better than the original or initial solution, the new 
solution becomes the new best solution (more details are found on the Moodle 
platform).

4.2

1 http://www.cleveralgorithms.com/
2 https://www.saipanyam.net/2011/06/clever-algorithms-python.html
3 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/XML-TSPLIB/instances/
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Heuristic 2: Savings-Based Heuristic

The second heuristic is based on the concept of the well-known savings 
heuristic of Clarke and Wright (1964). This savings-based heuristic handles 
small and large instances of the TOP (Panadero et al., 2020). The basic 
concepts and key information on the Python4 implementation of this heu­
ristic are presented below, and the detailed explanation can be checked on 
Moodle or in the available references.

Savings-based Heuristic Basic Concepts

The savings-based heuristic starts with a dummy solution from the origin 
to the destination, where one route per node is considered; each node is 
connected to the origin and the destination nodes. Since the origin and 
destination are two different nodes, the connecting arcs are oriented in a 
specific direction. Basically, a vehicle leaves the origin depot (node 0), visits 
node i , and then continues its journey to the destination depot (node i + 1 ). 
Merging arcs occur when precedence constraints are satisfied. Thus, if a 
route in this dummy solution does not satisfy the driving range constraint, 
the associated customer is discarded from the problem; this node cannot 
be reached with the current fleet of vehicles. Since the objective function 
of the TOP maximizes the rewards collected in a limited available time, 
the "saving" is associated with each arc connecting two different customers. 
This saving is related to the reward obtained by visiting both customers 
on the same route rather than using two different routes (Panadero et al. 
2020). Figure 4 presents the basic generic pseudocode of the savings-based 
heuristic.

5

5.1

4 https://docs.python.org/3/library/index.html
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Savings-Based Heuristic (SEED, Nodes)
1 sol  createDummySolution(Nodes);
2 SavingsList  computeSortedSavingsList(Nodes);
3 While (SavingsList is not empty) do 
4 edge  selectNextEdge(SavingsLists)
5 iRoute  getStartingRoute(edge)
6 jRoute  getClosingRoute(edge)
7 travelTimeNewRoute  validate MergeDrivingConstraints(NewRoute)
8 isMergeValid  validateMergeDrivingConstraints
9 if (isMergeValid) then 
10 sol UpdateSolution(newRoute, iRoute, jRoute, sol)
11 end if
12 deleteEdgeFromList(edge);
13 end While
14 SortRouteByProfit(sol)
15 deleteRoutesByProfit (sol, maxVehicles)
16 return sol

Pseudocode of a generic savings-based heuristic according to Juan et al. 
(2020)

The enriched savings heuristic considers a linear combination of classical 
savings defined by Clarke and Wright (1964) and the reward associated 
with an arc. Both quantities must be in the same order of magnitude for 
this linear combination. Mathematically, this represents the efficiency or 
enriched savings and defines the relevance given to each of the parameters 
to be optimized, the original savings based on distance or time, and the 
utility or reward of the visiting node.

There are two associated savings for each arc, depending on the actual 
direction in which the arc is traversed. After calculating all the savings, the 
list of arcs can be sorted from the highest to the lowest savings. From this 
list, the route merging starts. In each iteration, the arc at the top of the 
sorted list is selected. This arc connects two routes, which are merged into 
a new route as long as this new route does not violate the driving range 
restriction. Finally, the list of routes is sorted according to the total rewards 
provided to select as many routes as possible from this list, considering the 
restricted number of vehicles in the fleet (Panadero et al. 2020).

Key Information for Python Implementation

The implementation of the savings-based heuristic in Python starts by defi­
ning different classes: Node, Edge, Route, and Solution. The class Node con­
tains the information associated with the nodes. The class Edge contains the 

Figure 4:

5.2
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information on the edges connecting nodes and the concept of efficiency. 
The class Route is a list of connected edges, the path’s cost, and the total re­
wards (demand) collected. The class Solution counts the number of solutions 
and stores related information on each one of them. Detailed information 
on each class is available in the learning materials available to the students, 
as is the complete development of the metaheuristic.

For the construction of edges and nodes, a list of nodes is constructed 
in which the first node is node 0   and the destination node is node − 1  . 
Then, an edge (arc) is created between each node and other nodes, and the 
Euclidean distance is calculated accordingly. The efficiency list is a linear 
combination using α  and 1  –  α  , where α  is a prespecified factor e.g., 0.7, 
as explained in Section 5.1. The resulting efficiency list is then sorted from 
the highest to the lowest value.

The construction of a dummy solution, which is the route from the 
origin to a node and then to the destination, is used to create the initial 
solution. The total reward for each route created in the dummy solution 
is also calculated. From there, the algorithm starts performing the iterative 
process of edge selection and route merging, based on the following condi­
tions: (i) the resulting merged route must not exist in the defined routes; 
(ii) the first node must be linked to the origin and the last one to the 
destination; and (iii) the cost after merging the routes should not exceed the 
maximum time allowed. The merging process must start with a while loop, 
where the conditions are evaluated, and the merging process occurs. The 
loop must be executed several times.

In a final step, the solution is sorted by the merged routes generated. 
Since the final solution needs a certain number of routes given by the 
number of vehicles in the fleet, unnecessarily stored information must be 
eliminated. Finally, printing and plotting the solution using the networkx 
library is recommended.

Further Input: Comparison between Heuristics

In our studies, we would like to compare heuristics and select a heuristic 
to be adapted. For the comparison, statistical tests are used to differentiate 
between different approaches and heuristics (Beiranvand et al. 2017). In 
order to compare heuristics, benchmark data sets are used. The heuristics 
are compared with respect to their performance, such as the quality of 
the recommended solutions and efficiency (Beiranvand et al. 2017). The 
difference between recommended solutions and the best-known solution 

6
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defines the quality of the solutions, and the efficiency of a heuristic might 
be represented by the time required to get a solution.

In the statistical tests statements, we define hypotheses (Montgomery 
and Runger 2007, Sheskin 2011). A null hypothesis, H0 , states that no 
difference between the heuristics exists, while an alternative hypothesis, H1 , 
defines a claim to be tested. For example, H0:S1 − S2 = 0  and H1:S2 > S1 . H0 states that solutions S1  and S2  found by two heuristics do not differ, and H1  states that the solution found by heuristic 2 is better than the solution 
found by heuristic 1 with respect to profit, S2 > S1 . The statistical tests are 
performed with strong evidence required to reject H0 . If H0  is rejected, H1  is 
accepted.

The selection of a statistical test depends on the parameter being tested, S , and the sample size. In our comparisons, the sample size is defined by the 
number of heuristic runs on a benchmark data set. Examples of statistical 
tests are parametric tests and non-parametric tests (Sheskin 2011). Several 
assumptions are required to utilize parametric tests: (i) tested samples are 
selected randomly from their populations; (ii) the distribution of the popu­
lation follows normal distribution; and (iii) the variance of the population 
is homogenous. If one of the assumptions is violated, non-parametric tests 
should be used. Non-parametric tests have the advantage of being suitable to 
test small samples with (n  < 30).

If a heuristic is run more than 30 times on a benchmark data set, a t -test could be used (Montgomery and Runger 2007). In the t -test, the 
mean of the solutions, μ , of the two heuristics considered is calculated and 
compared. The p -value of the test defines “the smallest level of significance 
that would lead to the rejection of the null hypothesis H0  with the given 
data” (Montgomery and Runger 2007, p. 300). The p -value is compared to α , significance level. If the p -value is smaller than α , H1  is accepted and it is 
concluded that both heuristics differ significantly (μ1 ≠ μ2  . Otherwise, H0  
cannot be rejected. The common values for α  are 10% or 5%.

In addition to statistical tests, we can plot the experiment’s results and 
tabulate them to highlight the difference between heuristics (Beiranvand et 
al. 2017). For example, the change of the best solutions found by a heuristic 
could be plotted versus the number of iterations. The best solutions found 
by a heuristic in different runs can be tabulated and compared to other 
heuristics by calculating the difference between them, a gap.
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Assessment

Students work in groups to solve the routing problem, like the one descri­
bed in Section 2 with their respective tasks (Section 2.2), implementing the 
heuristics in Python and comparing the heuristics described. First, students 
should select a problem to solve. Then, they design their experiments and 
run them. Finally, the results collected should be tabulated and analyzed 
in a group report. In advanced challenges, students modify the heuristics 
to become more agile by introducing biased randomization (the material is 
available on Moodle).

The group report is submitted to a tutor for feedback on the analysis 
and the experiments performed. Students use this feedback to assess their 
work and benefit from it in their future analyses. In addition, students can 
have group discussions to discuss their findings and ideas.

Abbreviations

GRASP Greedy Randomized Adaptive Search Procedure
IoT Internet of Things
OP Orienteering Problem
TOP Team Orienteering Problem
TSP Traveling Salesman Problem
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Template Didactical Concept — Handout for Teachers

Title Name of the Concept
Heuristics to Solve the Team Orienteering Problem

Lab Environment
X-Heuristics in Intelligent Transportation, Sustainable Logistics, and Smart 
Cities.

Didactical Analysis

Students should utilize Python to optimize a given function. Then, they are 
asked to construct their Python code for the greedy randomized adaptive se­
arch procedure (GRASP) and the Clarke & Wright Savings (CWS) heuristic 
to solve the team orienteering problem (TOP).

Target Group
The course targets bachelor’s and master’s students in industrial enginee­
ring, statistics, and logistics. These students need basic programming know­
ledge, analytics, applied optimization and simulation, data plotting, scienti­
fic paper reading, and report writing. The requirements target beginners, 
while optional exercises target advanced or expert students.

Institutional Requirements
The primary resource is a computer and access to the material. A Python 
language environment should be installed, e.g., Pycharm, to run experi­
ments. The tutor needs to be familiar with the problem presented and 
the Python code used to solve it. These problems are fundamental in trans­
portation and logistics, and the Python programming language is one of 
the easiest programming languages. Students may raise questions regarding 
running experiments and debugging the code.

Learning Objectives
• Students should remember and define the TOP.
• Students should be able to reproduce program codes to solve the TOP.
• Students should understand the basic heuristic used to solve the TOP.
• Students should apply the heuristic learned to solve the TOP’s instances.

1
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• Students should analyze the results obtained.
• Students should evaluate their code and modify it.
• Students should be able to describe their results in a report.

Subject Matter
This handout is related to the “Heuristics to Solve the Team Orienteering 
Problem” educational chapter. In this chapter, the GRASP and Clarke and 
Wright heuristics are introduced. In addition, implementation of Python is 
presented. The explanations are presented as videos in the Moodle course, 
and additional reading is recommended.

Didactical Concept

Methodical Implementation
• The concept of chapters is presented in a video, where the problem and 

the heuristic to solve it are presented.
• The students are asked to be divided into groups with 2 to 3 students per 

group to work on the exercises; thus, the learning is collaborative.
• A bigger group discussion could be arranged for all students in some 

circumstances.

Media
The material required is explained in videos (uploaded on the Moodle 
course). In the next version of the course, quizzes could be added there.

Learning Organization
Students work in groups; thus, students interact with their colleagues in 
their group. Further discussion could be arranged between groups, especial­
ly for optional exercises. These students could use the video conferencing 
platforms for meetings and discussions. The students could contact the tutor 
if they do not find an answer to their question or need more help. The 
videos are about one hour long, and students require discussions after the 
video and to do experiments; thus, the lecture's content and exercises are 
scheduled to last two weeks.
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Feedback and Evaluation
Students should present their experiment results as plots/reports and explain 
their findings. Thus, the evaluation could be based on their analysis and 
understanding of the presented concept. Each chapter is evaluated after two 
weeks of its release, and the evaluation may include suggestions to improve 
the analysis. This feedback enhances students’ learning and their analysis.

Expert Tips
Similarly to the situation in any programming lab, students raise many basic 
questions regarding code implementation. Students should be advised to 
use the debug to understand the code and rectify their errors.
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