
Ratnadeep Rajendra Kharade, Hadi Adineh 
and Dieter Uckelmann

Comparing Service-Oriented System Management 
Solutions in Remote and Virtual Laboratory 
Environments

Abstract
Digitalized laboratories are gaining importance in the higher education sec
tor. Students are being provided with remote access to physical laboratory 
infrastructures as well as online access to virtual labs. Due to the complexity 
of systems in digital laboratory environments, it is often difficult to manage 
the applications efficiently. Moreover, there can be multiple types of labora
tories with different system configurations. These laboratories need different 
management solutions based on the heterogeneity of lab systems. Therefore, 
different approaches are needed to create deployable software units which 
support multiple architectures.

We compare a microservices approach and monolithic architectures. As 
regards production deployment, virtualization and containerization along 
with their benefits and disadvantages are considered. In our research, we 
compared Docker solutions as well as the main Kubernetes tools like Mini
kube, Kubeadm, K3S, and Microk8s. Our goal is to identify solutions that 
are easy to manage even in heterogeneous hardware environments. Security, 
high availability, and compatibility with digitalized laboratories are also 
considered.

Keywords
Remote Laboratories, Digitalization, Microservices

Introduction

Digitalization is rapidly changing the world and many sectors are benefit
ting from it (Rodriguez-Andina et al., 2010). Digitalization in education is 
also being adopted in this wave. In lab-based education, digitalized laborato
ries, like remote laboratories and virtual laboratories are gaining more and 

1

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


more importance. Corresponding applications vary from basic web-based 
dashboards to highly domain-specific software (Taivalsaari & Mikkonen, 
2018). Those applications can be designed based on monolithic architec
tures or microservices approaches.

University labs are using a wide variety of hardware components. Some 
of the laboratories are specially designed for specific requirement. Unfortu
nately, hardware heterogeneity increases the complexity of system design 
and management. However, modern system management solutions can 
handle different hardware architectures, e.g., servers with Intel or AMD 
processors or IoT-compatible devices such as Raspberry PI with ARM archi
tecture.

Considering monolithic architectures as well as microservices approa
ches in homogeneous and heterogeneous environments, the aim of this 
research is to come up with a suitable solution based on the system require
ments in remote and virtual laboratories. Our findings will be beneficial for 
other digital laboratories.

As part of the Open Digital Lab 4 You (DigiLab4U) project (Pfeiffer 
& Uckelmann, 2019) and the concept of research based education, the 
requirements mentioned here have been researched by senior and student 
researchers (Kharade, 2021) at the University of Applied Sciences Stuttgart 
(HFT Stuttgart).

Background

Various architectures ranging from monolithic to microservices are compa
red along with their benefits in this research. The benefit of monolithic 
architecture is that its development can be faster in the initial phases (Kals
ke et al., 2017). However, the complexity of hardware architecture and 
problems arising due to an increase in codebase size could be mentioned 
as two major challenges with monolithic architecture. This poses challenges 
in the updating and scaling of application. On the other hand, microser
vices are small software units that run independently and have a single 
responsibility. Since microservices are loosely coupled, application scaling 
and deployments can be carried out independently (Kalske et al., 2017).

Traditionally, the deployment of the application used to be done directly 
on the underlying infrastructure, the host OS. Virtualization enables the 
creation of isolated virtual machines on a single hardware system. In con
trast, containers virtualize only the file system, whereas VMs virtualize the 
entire operating system. A container engine is basically a software piece 
that takes requests from users, including options from the command line, 

2

114  Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


pulls images, and executes the container from the perspective of the end 
user (McCarty, 2018). Compared to other container engines (e.g., RKT, 
CRIO and LXD), Docker provides additional features such as building the 
images and signing (Baker, 2020). Therefore, in this research for a laboratory 
environment, Docker is used as one of the use cases for container runtime. 
By taking advantage of Docker’s methodologies for shipping, testing, and 
deploying code quickly, the delay between writing code and running it in 
production can be significantly reduced (Official Docker Documentation).

Docker Swarm, Apache Mesos, and Kubernetes are some of the popular 
Container Orchestration Tools. Jawarneh et al. (Al Jawarneh et al., 2019) has 
done a comprehensive comparison of these tools based on major functiona
lity groups such as resource management, scheduling, and service manage
ment.

Kubernetes (Kubernetes.io, 2020) is an open-source, extendable, porta
ble platform for managing containerized workloads and services, aiding 
both automation and declarative configuration. It has a vast and rapidly 
evolving ecosystem. Kubernetes services, support, and tools are commonly 
obtainable. For this research, Kubernetes is further evaluated in terms of ma
naging applications in a laboratory environment, and the recent container 
orchestration tools are compared and evaluated.

Software Systems in a laboratory environment

There are different architectures for a software system, from traditional mo
nolithic architectures to the modern microservices architecture. Laboratory 
environments can be different in terms of hardware and software complexity 
and number of devices. So, each laboratory environment can have different 
requirements in terms of system architecture.

Similarly, based on laboratory requirements, system environments can 
also differ. There can be traditional servers or virtual machines or use of 
containerization.

System Architecture

A typical software system consists of various components such as web user 
interface, back end, and database application.

Traditionally, software systems were designed using a Monolithic archi
tecture. It provides a unified model in context to software design.

3

3.1

Comparing Service-Oriented System Management Solutions  115

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


Monolithic Architecture and its Challenges

Monolithic software is constructed as one unit. Monolithic software is struc
tured to be self-contained; elements of the package are connected and are 
dependent on each other. These packages have a high coupling between 
them. To execute the code, all components must be always available in 
a tightly coupled system. The benefit of monolithic architectures is that 
their development can be faster in their initial phases (Kalske et al., 2017). 
Monolithic architectures are best suited for laboratories which have very few 
hardware and software components and do not need frequent upgrades.

Even though monolithic types of software are simple and straightfor
ward to develop, they have some downsides. There are two major categories 
of challenges with monolithic architecture which are relevant for the soft
ware systems in a complex laboratory or IoT setup.

Challenges with Hardware Architecture Complexity
Laboratory environments may consist of different devices which have va
rious applications. These applications can be independent of each other 
and are distributed throughout the infrastructure. For example, a digital 
laboratory can have some applications which enable robotic movements 
using a Raspberry Pi, while the UI application and database applications 
run on high-end servers. Moreover, suppose that a lab needs to run other 
applications requiring high performance computing, virtual reality, artificial 
intelligence, or machine learning algorithms as well as data processing on 
GPUs. Since monolithic architectures are tightly coupled in nature, they 
are not particularly useful in IoT environments, where multiple applications 
run independently.

Also, different devices in an IoT infrastructure need different pro
gramming languages based on the functionality they need to achieve. This 
makes monolithic architectures unsuitable for deployment in complex labo
ratory environments as they are mostly based on the same programming 
context. For example, monolithic software based on tomcat server hosts uses 
interface, business logic as well database access in the same environment.

Challenges posed by the Software Development Process
The challenges with monolithic architectures escalate as the codebase in
creases in size. It is more difficult to incorporate new features and improve
ments to existing features as the developer must find the right place to apply 
changes (Kalske et al., 2017).

3.1.1

a.

b.

116  Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


Along with that, whenever a change is required in the software, the 
whole software is affected and needs to be redeployed, which increases the 
downtime of software even though it is not required for other functionali
ties.

Microservices Approach
Microservices are small software units that run independently and have a 
single responsibility, as shown in Figure 1. Microservices are loosely coupled 
in nature and focus on one utility. Loose coupling enables developers to 
make individual changes to microservices without impacting the rest of the 
codebase. Since microservices are not connected to each other, application 
scaling and deployments can be carried out independently (Kalske et al., 
2017).

Complex laboratory environments can benefit by incorporating micro
services architecture. Complex laboratory systems consist of independent 
software units which have varied purposes, such as data collections from 
sensors, actuation, data processing, and user interface. These functionalities 
work independently. Also, platform-dependent microservices can be develo
ped based on hardware architecture, for example software based on ARM 
architecture for Raspberry Pi and AMD for software based on intel servers. 
Development and scaling of these applications can be done independently 
without affecting other applications. This enables the development of IoT 
systems with wide availability.

System Environment

Traditionally, the deployment of the applications used to be done directly 
on the underlying infrastructure. In this approach, the applications are de
ployed directly on the host Operating System (OS) and access the system 
resources directly via host OS processes. Multiple applications are installed 
on an OS. These applications are exposed using ports on the host operating 
system.

Virtualization

Virtualization enables the creation of isolated Virtual Machines (VMs) on 
a single hardware system. These virtual machines have their own operating 
systems, also referred to as guest operating systems. This approach isolates 
software applications inside VM and limits resource usage per application. 

3.1.2

3.2

3.2.1

Comparing Service-Oriented System Management Solutions  117

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


System encompassing virtualization has components such as Host OS, hy
pervisor, and VM, as displayed in Figure 2.

Virtualization and Containerization

The benefit of VMs is that, in a laboratory environment, virtualized deploy
ments can be done on servers with greater processing power and memory. 

Figure 2:

Monolithic vs. Microservices architecturesFigure 1:

118  Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


So VMs are suitable for applications that are resource-intensive. Also, VMs 
are more secure because applications are deployed in the Guest OS.

The challenge with virtualization is that it is not suitable on edge de
vices as the guest OS on VM is itself heavyweight and a large chunk of the 
resources must be assigned to VMs. So VMs are not suitable in labs with 
low-end servers and applications needing few resources.

Containerization
The term containerization originates from shipping containers, where all 
goods are packaged within containers and shipped across the world. Soft
ware containers are used to pack software along with its dependencies. 
Software containers provide an isolated environment for an application 
which also contains the required packages, dependencies, and libraries, as 
displayed in Figure 2.

Software containers are platform independent. Containers try to solve 
the dev-ops problem through abstraction and platform independence in 
various environments such as ‘development’ and ‘production’.

A container is a runtime instance of an image. The image is a blueprint 
of a container which is never running. An image contains file systems and 
source codes. Many containers can be spawned from the same image.

Containers vs. VMs
Containers virtualize only the file system, whereas VMs virtualize entire 
operating systems. Containers share the kernel with the host OS. VMs create 
a new virtual kernel. Containers require a lower amount of storage, are 
lightweight, and take less time to boot up. On the other hand, VMs need 
mode storage as the OS and programs are not only installed and run, but are 
also heavyweight and even take more time to boot.

In a complex laboratory environment with multiple edge devices, con
tainers are a better option than VMs as edge devices require fewer system 
resources.

Container engines
A container engine is basically a software piece that takes requests from 
users, including options from the command line, pulls images, and executes 
the container from the perspective of the end user (McCarty, 2018).

Many container engines are available for running containers, such as 
Docker, RKT, CRI-O, and LXD. Along with that, various cloud providers 
such as Google GCP, Microsoft Azure, and Amazon AWS have their own 

3.2.2

3.2.3

3.2.4

Comparing Service-Oriented System Management Solutions  119

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


container engines, which utilize container images compliant with Docker or 
the open container initiative (McCarty, 2018).

Compared to other container engines, Docker provides additional fea
tures such as building the images and signing (Baker, 2020). Therefore, in 
this paper for a laboratory environment we used Docker as one of the use 
cases for container runtime.

Docker
Docker is a popular container technology provider. Using Docker, it is easier 
to create, deploy, and run applications. Docker is an open platform for deve
loping, shipping, and running applications. Docker enables separation of 
applications from infrastructure, so software can be delivered fast. By taking 
advantage of Docker’s methodologies for shipping, testing, and deploying 
code quickly, the delay between writing code and running it in production 
can be significantly reduced.

Container Orchestration

Automatic container deployments, management, scaling, and networking 
are achieved through the Container Orchestration process. It is feasible to 
deploy the same application in different environments and without any 
architecture modifications (RedHat, 2019). Along with managing a contai
ner’s life cycle, container orchestration tools also support the integration of 
continuous integration and continuous deployment workflows.

A container orchestration tool's major tasks are the management of sys
tem resources, scheduling of applications, and management of services (Al 
Jawarneh et al., 2019). Container orchestration tools manage the underlying 
infrastructure for setting up the applications and provisions communicati
ons between them even though they are distributed.

Although containers are a better solution, it gets difficult to manage 
applications when there are many servers distributed in a laboratory en
vironment, where there are distributed servers. Managing and networking 
challenges can be overcome using container orchestration.

Container Orchestration Tools
Over the last few years, many container orchestration platforms have been 
developed in the industry. Although they all perform the same simple con
tainer automation task, they run in various ways and have been developed 

3.2.5

3.3

3.3.1

120  Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


for various usage scenarios. The most popular tools are Kubernetes (k8s), 
Docker Swarm, and Apache Mesos.

These tools are compared by Jawarneh et al. (Al Jawarneh et al., 2019), 
as shown in Table 1 and Table 2, and we found out that Kubernetes is best 
suited to a laboratory environment.

Comparison of container orchestration tools based on resource utilization 
(Al Jawarneh et al., 2019)

 

Comparison of container orchestration tools based on features
(Al Jawarneh et al., 2019)

 

Table 1:

Table 2:

Comparing Service-Oriented System Management Solutions  121

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


Kubernetes
Kubernetes is an open-source, extendable, portable platform for managing 
containerized workloads and services, aiding both automation and declara
tive configuration. It has a vast, speedily evolving ecosystem. Kubernetes’ 
services, support, and tools are commonly obtainable.

The platform generally referred to as K8s or Kube has started taking the 
place of Development and Operations (DevOps) in recent years by helping 
developers to speed up the coding along with best practices, also to speed 
up deployments, automated testing, and updates. Moreover, working on 
Kube helps developers to manage apps as well as services with almost zero 
downtime. Also providing self-healing abilities, Kubernetes has the ability to 
detect and restart services if a process fails inside a container (Kubernetes.io, 
2020).

To develop scalable and portable application deployments that can be 
managed, scheduled, and maintained easily, it’s easy to notice why it’s be
coming the go-to technology of preference. Kubernetes can be integrated 
with all of the top free cloud offerings and can be used on-site in a corpora
te data hub. Its features, like cross-functionality and heterogeneous cloud 
support, are the reason behind making this platform standard in container 
orchestration (Kubernetes.io, 2020).

Microk8s
Microk8s is Kubernetes distribution developed by Canonical. Microk8s sup
ports a single node as well as a multi-node Kubernetes cluster in the produc
tion environment. Microk8s is also a minimal version of Kubernetes and is 
suited to all kinds of servers, such as high-end workstations to IoT devices. 
Microk8s’ installation is simple. Microk8s supports all popular add-ons, 
which are disabled initially and can be enabled when required. This makes 
Microk8s lightweight and suitable for any environment.

Suitable Kubernetes for a Laboratory Environment
The laboratory environment is a combination of multiple devices with diffe
rent architectures, such as ARM and AMD. Also, there are varying resources 
per device. For example, devices such as Raspberry Pi have less storage, 
memory, and CPU than high-end workstations such as Intel based CPUs. 
Due to these parameters, it becomes challenging to come up with proper 
tools in such a heterogeneous environment. Also, ease of setup and available 
features are important parameters.

3.3.2

3.3.3

3.3.4

122  Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


Based on the comparison of the tools, Microk8s and K3S are best suited 
for the laboratory environment and support multiple architectures.

Discussion and Sample Scenarios

Each digital laboratory has its own requirements and criteria as well as 
different hardware and software configurations. Some of them are used for 
performing experiments by accessing hardware remotely, while others are 
purely virtual ones. Based on these features the preferred solution for each 
laboratory can be chosen. These solutions could be adopted with personal 
computers, high-end servers or even lower-end Single-Board Computers 
(SBC) such as Raspberry PIs. Although there is no unique solution for all 
digital laboratories, this paper can help them to find the suitable solution. 
For example, here are some scenarios and solutions.

Scenario 1: To digitalize the RFID laboratory at the University of Ap
plied Sciences Stuttgart (HFT Stuttgart) in order to enable remote experi
ments, as discussed in (Pfeiffer et al., 2022), there is a RFID measuring 
device which is designed to be operated remotely. The device controller 
software needs to be run during the remote experiment runtime and part 
of its Graphical User Interface (GUI) is intended to be shared with remote 
users. Thus, we could only run this program on a real or virtualized Micro
soft Windows operating system, because this GUI dependency makes it too 
sophisticated to be containerized.

Scenario 2: In the second scenario, we found that the DigiLab4U La
boratory Management System (LabMS) (Adineh et al., 2022) is fully com
patible with containerization. A LabMS is an application with which to 
manage laboratory instruments, as well as enhance remote operation while 
cooperating with DigiLab4U shared services. LabMS applications have been 
mainly developed based on DigiLab4U LabMS libraries and are potentially 
adoptable in dockerization scenarios.

Scenario 3: Consider that there is a virtual laboratory through which 
to execute and evaluate Artificial Intelligence (AI), Machine Learning (ML), 
or data analytics algorithms. These algorithms consume high performance 
computing resources as well as Graphical Processing Units (GPUs) on the 
server’s side. As shown in other research, like that by Xu et al. (2017), 
by dockerizing part of GPUs’ computation, not only could the benefits of 
containerization be significantly minimized, but in some cases so could the 
overheads.

4

Comparing Service-Oriented System Management Solutions  123

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


Conclusions and Future works

In this paper, we prepared different solutions for system management in 
digital laboratories (remote and virtual laboratories) which have a different 
hardware and software complexity. The results show that when there is one 
application or service to be run, it is suitable for deployment on a single 
computing machine (e.g., PC, server, Raspberry Pi) as a normal running 
application. If there are multiple services to be run in one machine, imple
menting the Docker solution enables us to have more control over applicati
on management. Moreover, with the help of Kubernetes, laboratories with 
multiple machines in a distributed system can be managed more efficiently. 
Based on our findings, Kubernetes distribution Microk8s can handle multi
ple applications gracefully in laboratory environments with heterogeneous 
computing machines (PCs and Raspberry PIs). Mikrok8s is also easy to use 
in a laboratory environment as compared to other Kubernetes distributions.

As regards future work, evaluating the results of this research in a pu
rely virtual laboratory as well as a virtual reality provider is considered. 
Moreover, this research could be continued by providing a Kubernetes-based 
solution with which to manage all DigiLab4U services. Finally, we want to 
evaluate the architecture mentioned in a real laboratory and compare the 
results in terms of deployment speed, failure recovery, and security.

Acknowledgements

The DigiLab4U project, on which this paper is based, was funded by the 
Federal Ministry of Education and Research (BMBF), Germany under the 
funding code 16DHB2112. The responsibility for the content of this publi
cation lies with the authors.

References

Adineh, H., Galli, M., Heinemann, B., Höhner, N., Mezzogori, D., Ehlenz, M., & Uckelmann, 
D. (2022). Challenges and Solutions to Integrate Remote Laboratories in a Cross-Univer
sity Network. In M. E. Auer, K. R. Bhimavaram, & X.-G. Yue (eds.), Lecture Notes in 
Networks and Systems. Online Engineering and Society 4.0 (vol. 298, pp. 189–202). Springer 
International Publishing. https://doi.org/10.1007/978-3-030-82529-4_19

5

124  Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.1007/978-3-030-82529-4_19
https://doi.org/10.1007/978-3-030-82529-4_19
https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


Al Jawarneh, I. M., Bellavista, P., Bosi, F., Foschini, L., Martuscelli, G., Montanari, R., & Palopo
li, A. (2019). Container orchestration engines: A thorough functional and performance 
comparison. In ICC 2019-2019 IEEE International Conference on Communications (ICC). 
Symposium conducted at the meeting of IEEE.

Baker, E. (2020). A Comprehensive Container Runtime Comparison. https://www.capitalone.com/t
ech/cloud/container-runtime/

Kalske, M., Mäkitalo, N., & Mikkonen, T. (2017). Challenges when moving from monolith 
to microservice architecture. In International Conference on Web Engineering. Symposium 
conducted at the meeting of Springer.

Kharade, R. R. (2021). System Management, Recovery and Security in Laboratory Environment. 
Stuttgart University of Applied Sciences (HFT Stuttgart), Stuttgart, Germany.

Kubernetes.io. (2020). Kubernetes. https://kubernetes.io/docs/home/
McCarty, S. (2018). A Practical Introduction to Container Terminology. https://developers.redhat.co

m/blog/2018/02/22/container-terminologypractical-introduction/
Official Docker Documentation. Docker overview. https://docs.docker.com/get-started/overview/
Pfeiffer, A., Adineh, H., & Uckelmann, D. (2022). Aligning Technic with Didactic — A Remote 

Laboratory Infrastructure for Study, Teaching and Research. In M. E. Auer, K. R. Bhima
varam, & X.-G. Yue (eds.), Lecture Notes in Networks and Systems. Online Engineering and 
Society 4.0 (vol. 298, pp. 78–86). Springer International Publishing. https://doi.org/10.1007
/978-3-030-82529-4_8

RedHat. (2019). What is container orchestration? https://www.redhat.com/en/topics/containers/w
hat-is-container-orchestration

Rodriguez-Andina, J. J., Gomes, L., & Bogosyan, S. (2010). Current Trends in Industrial Elec
tronics Education. IEEE Transactions on Industrial Electronics, 10(57), 3245–3252.

Taivalsaari, A., & Mikkonen, T. (2018). A taxonomy of IoT client architectures. IEEE Software, 
35(3), 83–88.

Xu, P., Shi, S., & Chu, X. (2017). Performance Evaluation of Deep Learning Tools in Docker 
Containers. In 2017 3rd International Conference on Big Data Computing and Communicati
ons (BIGCOM). IEEE. https://doi.org/10.1109/bigcom.2017.32

Authors

Ratnadeep Rajendra Kharade
HFT Stuttgart
Schellingstraße 24
70174 Stuttgart
https://de.linkedin.com/in/ratnadeep-rajendra-kharade
-a0597a18
ratnadeep.kharade@outlook.com

Comparing Service-Oriented System Management Solutions  125

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://www.capitalone.com/tech/cloud/container-runtime
https://www.capitalone.com/tech/cloud/container-runtime
https://kubernetes.io/docs/home
https://developers.redhat.com/blog/2018/02/22/container-terminologypractical-introduction
https://developers.redhat.com/blog/2018/02/22/container-terminologypractical-introduction
https://docs.docker.com/get-started/overview
https://doi.org/10.1007/978-3-030-82529-4_8
https://doi.org/10.1007/978-3-030-82529-4_8
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://doi.org/10.1109/bigcom.2017.32
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://mailto:ratnadeep.kharade@outlook.com
https://ratnadeep.kharade@outlook.com
https://www.capitalone.com/tech/cloud/container-runtime
https://www.capitalone.com/tech/cloud/container-runtime
https://kubernetes.io/docs/home
https://developers.redhat.com/blog/2018/02/22/container-terminologypractical-introduction
https://developers.redhat.com/blog/2018/02/22/container-terminologypractical-introduction
https://docs.docker.com/get-started/overview
https://doi.org/10.1007/978-3-030-82529-4_8
https://doi.org/10.1007/978-3-030-82529-4_8
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://doi.org/10.1109/bigcom.2017.32
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://de.linkedin.com/in/ratnadeep-rajendra-kharade-a0597a18
https://mailto:ratnadeep.kharade@outlook.com
https://ratnadeep.kharade@outlook.com
https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb


Hadi AdinehDINEH
HFT Stuttgart
Schellingstr. 24
70174 Stuttgart
https://www.hft-stuttgart.de/p/hadi-adineh
hadi.adineh@hft-stuttgart.de

Prof. Dr.-Ing. Dieter Uckelmann
HFT Stuttgart
Schellingstr. 24
70174 Stuttgart
https://www.hft-stuttgart.de/p/dieter-uckelmann
dieter.uckelmann@hft-stuttgart.de

126  Ratnadeep Rajendra Kharade, Hadi Adineh and Dieter Uckelmann

https://doi.org/10.5771/9783957104106-113, am 03.07.2024, 11:31:05
Open Access –  - https://www.nomos-elibrary.de/agb

https://www.hft-stuttgart.de/p/hadi-adineh
https://www.hft-stuttgart.de/p/hadi-adineh
https://mailto:hadi.adineh@hft-stuttgart.de
https://www.hft-stuttgart.de/p/dieter-uckelmann
https://www.hft-stuttgart.de/p/dieter-uckelmann
https://dieter.uckelmann@hft-stuttgart.de
https://www.hft-stuttgart.de/p/hadi-adineh
https://www.hft-stuttgart.de/p/hadi-adineh
https://mailto:hadi.adineh@hft-stuttgart.de
https://www.hft-stuttgart.de/p/dieter-uckelmann
https://www.hft-stuttgart.de/p/dieter-uckelmann
https://dieter.uckelmann@hft-stuttgart.de
https://doi.org/10.5771/9783957104106-113
https://www.nomos-elibrary.de/agb

