Abstract
Organizations have always been dependent on communication, information, technology and their management. The development of information technology has sped up the importance of management information systems, which is an emerging discipline combining various aspects of informatics, information technology, and business management. Understanding the impact of information on today’s organizations requires technological and managerial views, which are both offered by management information systems.
Business management is not only about generating greater returns and using new technologies for developing businesses to reach future goals. Business management also means generating better revenue performance if plans are diligently followed.
It is part of business management to have an ear to the ground of global economic trends, changing environmental conditions and preferences, as well as the behavior of value chain partners. While, until now, business management and management information systems are mostly treated as independent fields, this publication takes an interest in the cooperation of the two. Its contributions focus on both research areas and practical approaches, in turn showing novelties in the area of enterprise and business management.
Main topics covered in this book are technology management, software engineering, knowledge management, innovation management and social media management.
This book adopts an international view, combines theory and practice, and is authored for researchers, lecturers, students as well as consultants and practitioners.
- Integration of Industry 4.0 Principles into Reverse Logistics Operations for Improved Value Creation: A Case Study of a Mattress Recycling Company by Özden Tozanlı, Elif Kongar
- Agrawal, S., Singh, R. K. & Murtaza, Q. 2015. A Literature Review And Perspectives In Reverse Logistics. Resources, Conservation And Recycling, 97, 76-92.
- Ahi, P. & Searcy, C. 2013. A Comparative Literature Analysis Of Definitions For Green And Sustainable Supply Chain Management. Journal Of Cleaner Production, 52, 329–341.
- Bartodziej, C. J. 2016. The Concept Industry 4.0: An Empirical Analysis Of Technologies And Applications In Production Logistics, Springer.
- Brettel, M., Friederichsen, N., Keller, M. & Rosenberg, M. 2014. How Virtualization, Decentralization And Network Building Change The Manufacturing Landscape: An Industry 4.0 Perspective. International Journal Of Mechanical, Industrial Science And Engineering, 8, 37–44.
- Cascadealliance 2017. The State Of The Mattress Recycling Industry.
- Chopra, S. & Meindl, P. 2007. Supply Chain Management. Strategy, Planning & Operation. Das Summa Summarum Des Management. Springer.
- Deep. 2018. Mattress Recycling [Online]. Department Of Energy & Environmental Protection. Available: Http://Www.Ct.Gov/Deep/Cwp/View.Asp?A=2714&Q=482160&Deepnav_Gid=1645%20.
- Efendigil, T., Önüt, S. & Kongar, E. 2008. A Holistic Approach For Selecting A Third-Party Reverse Logistics Provider In The Presence Of Vagueness. Computers & Industrial Engineering, 54, 269–287.
- Gbce. 2018. Bye Bye Mattress Recycling Program [Online]. Greater Community Bridgeport Enterprises. Available: Https://Greenteambpt.Com/Bye-Bye-Mattress-Recycling-Program/.
- Handfield, R. B. & Nichols, E. L. 1999. Introduction To Supply Chain Management, Upper Saddle River, Nj: Prentice Hall.
- Hofmann, E. & Rüsch, M. 2017. Industry 4.0 And The Current Status As Well As Future Prospects On Logistics. Computers In Industry, 89, 23–34.
- Kagermann, H., Lukas, W.-D. & Wahlster, W. 2011. Industrie 4.0: Mit Dem Internet Der Dinge Auf Dem Weg Zur 4. Industriellen Revolution. Vdi Nachrichten, 13, 11.
- Kagermann, H., Wahlster, W. & Helbig, J. 2012. Im Fokus: Das Zukunftsprojekt Industrie 4.0: Handlungsempfehlungen Zur Umsetzung. Bericht Der Promotorengruppe Kommunikation. Forschungsunion.
- Lasi, H., Kemper, H.-G., Fettke, P., Feld, T. & Hoffmann, M. 2014. Industry 4.0. Business & Information Systems Engineering, 6, 239–242.
- Porter, M. E. 1985. Competitive Advantage: Creating And Sustaining Superior Performance. 1985. New York: Free Press.
- Stock, T. & Seliger, G. 2016. Opportunities Of Sustainable Manufacturing In Industry 4.0. Procedia Cirp, 40, 536–541.
- Tozanli, O., Duman, G., Kongar, E. & Gupta, S. 2017. Environmentally Concerned Logistics Operations In Fuzzy Environment: A Literature Survey. Logistics, 1, 4.
- Tuck. 2018. Mattresses [Online]. Tuck Advancing Better Sleep. Available: Https://Www.Tuck.Com/Mattresses/.
- Wef. 2017. Impact Of The Fourth Industrial Revolution On Supply Chains [Online]. World Economic Forum. Available: Http://Www3.Weforum.Org/Docs/Wef_Impact_Of_The_Fourth_Industrial_Revolution_On_Supply_Chains_.Pdf [Accessed October 2017.
- Dynamic Customer Service Levels: Evolving Safety Stock Requirements for Changing Business Needs by Daniel Patrick Covert, Joaquin Alberto Ortiz Millan, Tugba Efendigil
- Armstrong, David J. "Sharpening inventory management." Harvard Business Review 63.6 (1985): 42–58.
- Bijvank, Marco. "Periodic review inventory systems with a service level criterion." Journal of the Operational Research Society 65.12 (2014): 1853–1863.
- Dubelaar, Chris, Garland Chow, and Paul D. Larson. "Relationships between inventory, sales and service in a retail chain store operation." International Journal of Physical Distribution & Logistics Management 31.2 (2001): 96–108.
- Emmelhainz, Larry W., Margaret A. Emmelhainz, and James R. Stock. "Logistics implications of retail stockouts." Journal of Business Logistics 12.2 (1991): 129.
- Flores, Benito E., and D. Clay Whybark. "Implementing multiple criteria ABC analysis." Journal of Operations Management 7.1 – 2 (1987): 79–85.
- Flores, Benito E., David L. Olson, and V. K. Dorai. "Management of multicriteria inventory classification." Mathematical and Computer modelling 16.12 (1992): 71–82.
- Koottatep, Pakawkul, and Jinqian Li. Promotional forecasting in the grocery retail business. Diss. Massachusetts Institute of Technology, 2006.
- Millstein, Mitchell A., Liu Yang, and Haitao Li. "Optimizing ABC inventory grouping decisions." International Journal of Production Economics 148 (2014): 71–80.
- Mohammaditabar, Davood, Seyed Hassan Ghodsypour, and Chris O'Brien. "Inventory control system design by integrating inventory classification and policy selection." International Journal of Production Economics 140.2 (2012): 655–659.
- Ng, Wan Lung. "A simple classifier for multiple criteria ABC analysis." European Journal of Operational Research 177.1 (2007): 344–353.
- Porras, Eric, and Rommert Dekker. "An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods." European Journal of Operational Research 184.1 (2008): 101–132.
- Ramanathan, Ramakrishnan. "ABC inventory classification with multiple-criteria using weighted linear optimization." Computers & Operations Research 33.3 (2006): 695–700.
- Silver, Edward Allen, Pyke, David F., & Peterson, Rein. (1998). Inventory management and production planning and scheduling (Vol. 3, p. 30). New York: Wiley.
- Taylor, J. C., & Fawcett, S. E. (2001). Retail on‐shelf performance of advertised items: an assessment of supply chain effectiveness at the point of purchase. Journal of Business Logistics, 22(1), 73–89.
- Teunter, Ruud H., M. Zied Babai, and Aris A. Syntetos. "ABC classification: service levels and inventory costs." Production and Operations Management 19.3 (2010): 343–352.
- Van Kampen, Tim J., Renzo Akkerman, and Dirk Pieter van Donk. "SKU classification: a literature review and conceptual framework." International Journal of Operations & Production Management 32.7 (2012): 850–876.
- Thomopoulos, Nick T. "Promotion Forecasts" Demand Forecasting for Inventory Control. Springer International Publishing, 2015. 71–87.
- Timofeev, Roman. "Classification and regression trees (cart) theory and applications." Humboldt University, Berlin (2004).
- Yang, Liu. Optimizing inventory for profitability and order fulfillment improvement: Integrating Inventory Classification and Control Decisions under Non-Stationary Demand For Profit Maximization and Integrating Inventory Classification and Control Decisions to Maximize Order Fulfillment Measures. Diss. University of Missouri-Saint Louis, 2016.
- Yu, Min-Chun. "Multi-criteria ABC analysis using artificial-intelligence-based classification techniques." Expert Systems with Applications 38.4 (2011): 3416–3421.
- Zhang, Rachel Q., Wallace J. Hopp, and Chonawee Supatgiat. "Spreadsheet implementable inventory control for a distribution center." Journal of Heuristics 7.2 (2001): 185–203.
- Zhou, Peng, and Liwei Fan. "A note on multi-criteria ABC inventory classification using weighted linear optimization." European journal of operational research 182.3 (2007): 1488–1491.
- Industry 4.0: Is Your Country Ready? by Serpil Erol, Gül Didem Batur Sir
- Cabinet Office. “Report on the 5th science and technology basic plan”, Cabinet Office of Japan, Tokyo, 2015.
- Conseil national de l’industrie. “The new face of industry in France”, French National Industry Council, Paris, 2013.
- European Commission, “Factories of the Future PPP: Towards Competitive EU Manufacturing”, European Commission, Bruxelles, 2016.
- European Parliament’s Committee on Industry, Research and Energy, Study for ITRE, “Industry 4.0”, Policy Department A: Economic and Scientific Policy, Brussels, 2016.
- Evans, P.C. & Annunziata, M. “Industrial internet: pushing the boundaries of minds and machines”, General Electric, Boston, 2012.
- Foresight. “The future of manufacturing: a new era of opportunity and challenge for the UK”, UK Government Office for Science, London, 2013.
- Gentner, S. “Industry 4.0: Reality, Future or just Science Fiction? How to Convince Today’s Management to Invest in Tomorrow’s Future! Successful Strategies for Industry 4.0 and Manufacturing IT”, CHIMIA International Journal for Chemistry, Vol. 70, No. 9, 2016, pp. 628–633.
- https://www.statista.com/statistics/667634/leading-countires-industry-40-worldwide/
- Kagermann, H., Wahlster, W. & Helbig, J. “Recommendations for implementing the strategic initiative Industrie 4.0”, Final Report of the Industrie 4.0 Working Group of Acatech, Berlin, 2013.
- Kang, H.S., Lee, J.Y., Choi, S., Kim, H., Park, J.H., Son, J.Y., Kim, B.H. & Do Noh, S. “Smart manufacturing: Past research, present findings, and future directions”, International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, No. 1, 2016, pp. 111–128.
- Li, K. “Made in China 2025”, State Council of China, Beijing, 2015.
- Liao, Y., Deschamps, F., Loures, EDFR & Ramos, L.F.P., "Past, present and future of Industry 4.0-a systematic literature review and research agenda proposal", International journal of production research, Vol. 55, No. 12, 2017, pp. 3609–3629.
- Mueller, E., Chen, X. L., & Riedel, R. “Challenges and requirements for the application of industry 4.0: a special insight with the usage of cyber-physical system”, Chinese Journal of Mechanical Engineering, Vol. 30, No. 5, 2017, pp. 1050–1057.
- National Research Foundation. “Research, innovation and enterprise (RIE) 2015 plan” Prime Minister’s Office of Singapore, Singapore, 2016.
- Rafael R., Shirley A.J. & Liveris, A. “Report to the president accelerating u.s. advanced manufacturing”, The President’s Council of Advisors on Science and Technology, Washington, 2014.
- Ridgway, K., Clegg, C.W. & Williams, D.J. “The factory of the future. Future of Manufacturing Project: Evidence Paper 29”, Government Office for Science, London, 2013.
- Siemieniuch, C.E., Sinclair, M.A. & deC Henshaw, M.J. “Global Drivers, Sustainable Manufacturing and Systems Ergonomics”, Applied Ergonomics, Vol. 51, 2015, pp. 104–119.
- World Economic Forum, ‘Readiness for the Future of Production Report’, World Economic Forum’s System Initiative on Shaping the Future of Production, 2018.
- Transformation of Shop Floor with Industry 4.0: Guidelines for Manufacturing Companies by Fatma DEMIRCAN KESKIN, Haluk SOYUER, Hakan OZKARA
- Abersfelder, S., Bogner, E., Heyder, A. and Franke, J. (2016). “Application and Validation of an Existing Industry 4.0 Guideline for the Development of Specific Recommendations for Implementation”, Advanced Materials Research, 1140: 465–472.
- Almada-Lobo, F. (2015). The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES), Journal of Innovation Management, 3(4), 16–21.
- Berger, C., Berlak, J. and Reinhart, G. (2016). Service-based Production Planning and Control of Cyber-Physical Production Systems, BLED 2016 Proceedings, pp: 491–502.
- Cachada, A., Pires, F., Barbosa, J., & Leitão, P. (2017, October). Petri nets approach for designing the migration process towards industrial cyber-physical production systems. In Industrial Electronics Society, IECON 2017–43rd Annual Conference of the IEEE (pp. 3492–3497). IEEE.
- Erol, S., Schumacher, A. and Sihn, W. (2016). “Strategic guidance towards Industry 4.0 – a three-stage process model”. International Conference on Competitive Manufacturing 2016 (COMA'16), At Stellenbosch, South Africa.
- Gorecky, D., Schmitt, M., Loskyll, M., & Zühlke, D. (2014, July). Human-machine-interaction in the industry 4.0 era. In Industrial Informatics (INDIN), 2014 12th IEEE International Conference on(pp. 289–294). Ieee.
- Industrie 4.0 Reifegrad – Selbstcheck f¨ur Unternehmen. 2016. URL:https://ihk-industrie40.de/selbstcheck/.
- Kagermann, H., Wahlster, W. and Helbig, J. (2013). “Securing the future of German manufacturing industry, Recommendations for implementing the strategic initiative INDUSTRIE 4.0“, Final report of the Industrie 4.0“ Working Group,“Report_“Industrie 4.0“_engl.pdf, Frankfurt, April 2013.
- Khedher, A.B., Henry, S., and Bouras, A. (2011). Integration between MES and Product Lifecycle Management. 2011 IEEE 16th Conference on Emerging Technologies & Factory Automation (ETFA).
- Klein, K., Franke, M., Hribernik, K., Coscia, E., Balzert, S., Sutter, J., and Thoben, K. D. (2014, November). Potentials of future internet technologies for digital factories. In Computer Systems and Applications (AICCSA), 2014 IEEE/ACS 11th International Conference on (pp. 734–741). IEEE.
- Kucharska, E., Grobler- Debska, K., Gracel, J., and Jagodzinski, M. (2015). “Idea of Impact of ERP-APS-MES Systems Integration on the Effectiveness of Decision Making Process in Manufacturing Companies”. In Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (Eds.). Beyond Databases, Architectures and Structures. 11th International Conference, BDAS 2015, Ustroń, Poland, May 26–29, 2015, Proceedings.
- Lee, J., Bagheri, B., and Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.
- Lee, J., Holgado, M., Kao, H. A., & Macchi, M. (2014). New thinking paradigm for maintenance innovation design. IFAC Proceedings Volumes, 47(3), 7104–7109.
- Leyh, C., Bley, K., Schäffer, T., & Forstenhäusler, S. (2016, September). SIMMI 4.0-a maturity model for classifying the enterprise-wide it and software landscape focusing on Industry 4.0. In Computer Science and Information Systems (FedCSIS), 2016 Federated Conference on (pp. 1297–1302). IEEE.
- Lichtblau, K., Stich, V., Bertenrath, R., Blum, M., Bleider, M., Millack, A., Schmitt, K., Schmitz, E. & M.S.: IMPULS – Industrie 4.0- Readiness, (2015).
- Lins, R. G., Guerreiro, B., Schmitt, R., Sun, J., Corazzim, M., & Silva, F. R. (2017, October). A novel methodology for retrofitting CNC machines based on the context of industry 4.0. In Systems Engineering Symposium (ISSE), 2017 IEEE International (pp. 1–6). IEEE.
- Madkan, P. (2014). Empirical Study of ERP Implementation Strategies-Filling Gaps between the Success and Failure of ERP Implementation Process. International Journal of Information & Computation Technology, 4(6), 633–642.
- Naedele, M., Chen, H-M.,Kazman,R., Cai, Y.,Xiao, L. and Silva, C.V.A. (2015). Manufacturing execution systems: A vision for managing software development. The Journal of Systems and Software, 101: 59–68.
- Panetto, H., and Molina, A. (2008). Enterprise Integration and Interoperability in Manufacturing Systems: trends and issues. Computers in Industry, 59(7), 641–646.
- Porter, M.E., and Heppelmann, J.E. (2015). How Smart, Connected Products Are Transforming Companies, Harvard Business Review, 1–9.
- PricewaterhouseCoopers: The Industry 4.0 / Digital Operations Self Assessment, (2016).
- Romero, D., Stahre, J., Wuest, T., Noran, O., Bernus, P., Fast-Berglund, Å., & Gorecky, D. (2016, October). Towards an operator 4.0 typology: a human-centric perspective on the fourth industrial revolution technologies. In INTERNATIONAL CONFERENCE ON COMPUTERS & INDUSTRIAL ENGINEERING (CIE46) (pp. 1–11).
- Romero, D., and Vernadat, F. (2016). Enterprise information systems state of the art: Past, present and future trends. Computers in Industry, 79, 3–13.
- Roy, R., Stark, R., Tracht, K., Takata, S., & Mori, M. (2016). Continuous maintenance and the future–Foundations and technological challenges. CIRP Annals, 65(2), 667–688.
- Sanders, A., Elangeswaran, C., and Wulfsberg, J. (2016). “Industry 4.0 Implies Lean Manufacturing: Research Activities in Industry 4.0 Function as Enablers for Lean Manufacturing”, Journal of Industrial Engineering and Management, 9(3), 812–833.
- Schumacher, A., Erol, S., & Sihn, W. (2016). A maturity model for assessing industry 4.0 readiness and maturity of manufacturing enterprises. Procedia CIRP, 52, 161–166.
- Seitz, K-F., and Nyhuis, P. (2015). Cyber-Physical Production Systems Combined with Logistic Models – A Learning Factory Concept for an Improved Production Planning and Control. Procedia CIRP, (32), 92–97.
- Shrouf, F., Ordieres, J., and Miragliotta, G. (2014). Smart Factories in Industry 4.0: A Review of the Concept and of Energy Management Approached in Production Based on the Internet of Things Paradigm. Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on, 9–12 Dec. 2014, 697–701.
- Stojkić, Z., Veža, I., and Bošnjak, I. (2016). A Concept Of Information System Implementation (CRM and ERP) Within Industry 4.0. 26TH DAAAM International Symposium On Intelligent Manufacturing and Automation, 912–919.
- Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9–12), 3563–3576.
- Tao, F., & Zhang, M. (2017). Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. Ieee Access, 5, 20418–20427.
- Theorin, A., Bengtsson, K., Provost, J., Lieder, M., Johnsson, C., Lundholm, T., and Lennartson, B. (2016). An event-driven manufacturing information system architecture for Industry 4.0, International Journal of Production Research, 1–15.
- Uhlemann, T. H. J., Lehmann, C., & Steinhilper, R. (2017). The digital twin: Realizing the cyber-physical production system for industry 4.0. Procedia Cirp, 61, 335–340.
- Wang, H., Liu, L., Fei, Y., and Liu, T. (2016). A collaborative manufacturing execution system oriented to discrete manufacturing enterprises. Concurrent Engineering, 24(4), 330–343.
- Wang, X., Ong, S. K., & Nee, A. Y. (2016). A comprehensive survey of augmented reality assembly research. Advances in Manufacturing, 4(1), 1–22.
- Zainal, Z. (2007). Case study as a research method. Jurnal Kemanusiaan, (9), 1–6.
- Zhuang, C., Liu, J., & Xiong, H. (2018). Digital twin-based smart production management and control framework for the complex product assembly shop-floor. The International Journal of Advanced Manufacturing Technology, 96(1–4), 1149–1163.
- A Review on Cold Chain Management for Industry 4.0 by Cagla Ediz
- Atzori, L., Iera, A., & Morabito, G. (2010). The Internet Of Things: A Survey. Computer Networks, 54(15), 2787–2805.
- Barata, J., Rupino Da Cunha, P., & Stal, J. (2018). Mobile Supply Chain Management In The Industry 4.0 Era: An Annotated Bibliography And Guide For Future Research. Journal of Enterprise Information Management, 31(1), 173–192.
- Barreto, L., Amaral, A., & Pereira, T. (2017). Industry 4.0 Implications In Logistics: An Overview. Procedia Manufacturing, 13, 1245–1252.
- Benešová, A., & Tupa, J. (2017). Requirements For Education And Qualification Of People In Industry 4.0. Procedia Manufacturing, 11, 2195–2202.
- Bouzakis, A., & Overmeyer, L. (2012, November). Simulation Analysis For The Performance Of Integrated HF RFID Antennas. In Computer Modeling And Simulation (EMS), 2012 Sixth Uksim/AMSS European Symposium On,391–394, IEEE.
- Corallo, A., Latino, M. E., & Menegoli, M. (2018). From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability. Int. J. Nutr. Food Eng., 12(5).
- Dombrowski, U., Richter, T., & Krenkel, P. (2017). Interdependencies Of Industrie 4.0 & Lean Production Systems: A Use Cases Analysis. Procedia Manufacturing, 11, 1061–1068.
- Drath, R., & Horch, A. (2014). Industrie 4. 0: Hit Or Hype? IEEE Ind Electron Mag, 8(2):56–58.
- Erkollar, A. & Oberer, B. (2017). Endüstri 4.0 Ve Ulaşımda Kullanımı. Transist 2017, 493–498.
- Fleisch, E., Weinberger, M., & Wortmann, F. (2015). Business Models And The Internet Of Things. In Interoperability And Open-Source Solutions For The Internet Of Things, 6–10, Springer, Cham.
- Gunhan, T., Demir, V., & Bilgen, H. (2006). Çiftlik Tipi Süt Soğutma Tanklarının Performans Değerlerinin Deneysel Olarak Belirlenmesi. Tarım Makinaları Bilimi Dergisi, 2(4).
- Hermann, M., Pentek, T., & Otto, B. (2016, January). Design Principles For Industrie 4.0 Scenarios. In System Sciences (HICSS), 2016 49th Hawaii International Conference On,3928–3937, IEEE.
- Hofmann, E., & Rüsch, M. (2017). Industry 4.0 And The Current Status As Well As Future Prospects On Logistics. Computers In Industry, 89, 23–34.
- Kara, İ. (2009). CAN Haberleşme Protokolünün İncelenmesi Ve Bir Sıcaklık Kontrol Sistemine Uygulanması (Doctoral Dissertation).
- Muneeswaran. A. (2015). Automotive Diagnostics Communication Protocols AnalysisKWP2000, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), Volume 10, Issue 1, Ver. 1 (Jan – Feb. 2015), 20–31.
- Olsen, P., & Borit, M. (2013). How to define traceability. Trends in food science & technology, 29(2), 142–150.
- Onat, O. (2018). Sürücüsüz Otomobil de Kaza Yapar, CNN Turk, 20.03.2018.
- Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6, 239–242.
- Lu Y., Industry 4.0: A Survey On Technologies, Applications And Open Research İssues, In Journal Of Industrial Information Integration, Volume 6, 2017, Pages 1–10.
- Oberer, B., & Erkollar, A. (2017), Sustainable Cities Need Smart Transportation: The Industry 4.0 Transportation Matrix. Transist 2017, 188–197.
- Ozgüven, M. M. (2016), Radyo Frekansli (Rf) Pedometre Tasarimi. (Master Thesis), Gaziosmanpaşa University, Tokat.
- Shafiq, S. I., Sanin, C., Szczerbicki, E., & Toro, C. (2015). Virtual Engineering Object/Virtual Engineering Process: A Specialized Form Of Cyber Physical System For Industrie 4.0. Procedia Computer Science, 60, 1146–1155.
- Sung, T. K. (2018). Industry 4.0: A Korea perspective. Technological Forecasting and Social Change, 132, 40–45.
- Suru Yonetimli Buyukbas Sagım Sistemleri, Sezer Tarım Teknolojileri, http://www.sezermac.com/index.php?sayfa=detay&act=view&code=507&cat=413&catname=S%FCr%FC%20Y%F6netimli%20B%FCy%FCkba%FE%20Sa%F0%FDm%20Sistemleri, accessed on 2.6.2018.
- TC Milli Eğitim Bakanlığı (2013). Gıda Teknolojisi, Sütü İşletmeye Alma, Ankara,.
- Tanrıvermiş, H., & Mülayim, Z. G. (1997). Sanayinin Neden Olduğu Çevre Kirliliğinin Tarıma Verdiği Zararların Değerinin Biçilmesi: Samsun Gübre (TÜGSAS) Ve Karadeniz Bakır (KBI) Sanayileri Örneği,. J. Agriculture And Forestry, 23, 337–345.
- Thames, L., & Schaefer, D. (2016). Software-Defined Cloud Manufacturing For Industry 4.0. Procedia CIRP, 52, 12–17.
- Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What Does Industry 4.0 Mean To Supply Chain? Procedia Manufacturing, 13, 1175–1182.
- Tupa, J., Simota, J., & Steiner, F. (2017). Aspects Of Risk Management Implementation For Industry 4.0. Procedia Manufacturing, 11, 1223–1230.
- Connection between industry 4.0 and smart factories by Elif Nurten, Cagla Seneler
- Alcin, S. (2016). ÜRETİM İÇİN YENİ BİR İZLEK: SANAYİ 4.0. Journal of Life Economics, 3(8), pp.19 – 19.
- AZoNano.com. (2005). What is Nanotechnology and What Can It Do?. [online] Available at: https://www.azonano.com/article.aspx?ArticleID=1134
- Burke, R., Mussomeli, A., Laaper, S., Hartigan, M. and Sniderman, B. (2017). The smart factory. [online] Deloitte Insights. Available at: https://www2.deloitte.com/insights/us/en/focus/industry-4-0/smart-factory-connected-manufacturing.html
- Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M. and Yin, B. (2018). Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access, 6, pp.6505 – 6519.
- Cleaveland, P. (2006). What is a smart sensor? – Control Engineering. [online] Control Engineering. Available at: https://www.controleng.com/articles/what-is-a-smart-sensor/
- Correia, M. (2014). Industrie 4.0 Framework, Challenges and Perspectives. [online] Recipp.ipp.pt. Available at: http://recipp.ipp.pt/bitstream/10400.22/7110/1/DM_CorreiaMiguel_2014_MEM.pdf
- Deloitte Insights. (2018). Forces of change: Industry 4.0. [online] Available at: https://www2.deloitte.com/insights/us/en/focus/industry-4-0/overview.html Duivenvoorden, C. (2017). The Beginners Guide To The Industry 4.0 – Industry4Magazine. [online] Industry4Magazine. Available at: https://industry4magazine.com/the-beginners-guide-to-the-industry-4-0-f45b93a95649
- Jazdi, N. (2014). Cyber physical systems in the context of Industry 4.0. 2014 IEEE International Conference on Automation, Quality and Testing, Robotics.
- Lee, E. (2008). Cyber Physical Systems: Design Challenges. 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC).
- Lee, E (2015). The Past, Present and Future of Cyber-Physical Systems: A Focus on Models. Sensors, 15(3), pp.4837 – 4869.
- Lee, I. and Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), pp.431 – 440.
- Lee, J., Bagheri, B. and Kao, H. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, pp.18 – 23.
- Lee, J., Davari, H., Singh, J. and Pandhare, V. (2018). Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters, 18, pp.20 – 23.
- Lueth, K. (2014). Why it is called Internet of Things: Definition, history, disambiguation. [online] Iot-analytics.com. Available at: https://iot-analytics.com/internet-of-things-definition/ Marr, B. (2016). What Everyone Must Know About Industry 4.0. [online] Forbes.com. Available at: https://www.forbes.com/sites/bernardmarr/2016/06/20/what-everyone-must-know-about-industry-4-0/#6f0059f3795f
- OTTO Motors. (n.d.). 5 Key Industry 4.0 Technologies Changing Manufacturing. [online] Available at: https://ottomotors.com/blog/5-industry-4-0-technologies
- Rojko, A. (2017). Industry 4.0 Concept: Background and Overview. International Journal of Interactive Mobile Technologies (iJIM), 11(5), p.77.
- Rghioui, A. (2017). Internet of Things: Visions, Technologies, and Areas of Application. Automation, Control and Intelligent Systems, 5(6), p.83.
- Sawe, B. (2017). What Was The Second Industrial Revolution?. [online] WorldAtlas. Available at: https://www.worldatlas.com/articles/what-was-the-second-industrial-revolution.html Scheuermann, C., Verclas, S. and Bruegge, B. (2015). Agile Factory – An Example of an Industry 4.0 Manufacturing Process. 2015 IEEE 3rd International Conference on Cyber-Physical Systems, Networks, and Applications.
- Schwab, K. (n.d.). The fourth industrial revolution.
- Shrouf, F., Ordieres, J. and Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. 2014 IEEE International Conference on Industrial Engineering and Engineering Management.
- Sniderman, B., Mahto, M. and Cotteleer, M. (2016). Industry 4.0 and manufacturing ecosystems. [online] Deloitte Insights. Available at: https://www2.deloitte.com/insights/us/en/focus/industry-4-0/manufacturing-ecosystems-exploring-world-connected-enterprises.html
- Weallans, S. (2018). IIoT And Industry 4.0: The Basics You Need to Know | Sensors Magazine. [online] Sensorsmag.com. Available at: https://www.sensorsmag.com/components/iiot-and-industry-4-0-basics-you-need-to-know
- Wright, G. (2018). Smart factories just got smarter. [online] Manufacturingglobal.com. Available at: https://www.manufacturingglobal.com/technology/smart-factories-just-got-smarter
- Techno-Parks on the Digital Transformation by Gizem ATAK, Ferhan ÇEBİ
- Ahuett-Garza, H., & Kurfess, T. (2018). A brief discussion on the trends of habilitating technologies for Industry 4.0 and Smart manufacturing. Manufacturing Letters.
- Auger, P., Barnir, A., & Gallaugher, M. J. (2003). Business Process Digitization, Strategy, and the Impact of Firm Age and Size: The Case of the Magazine Publishing Industry. Journal of Business Venturing, (6) 18, 789–814.
- Atak G. (2018), The Role of Technopark Companies in the Development of the Fourth Industrial Revolution in Turkey,. Istanbul Technical University, Unpublished master’s thesis
- Btgm.sanayi.gov.tr (2018). Date retrieved 28.12.2018, from https://btgm.sanayi.gov.tr/DokumanGetHandler.ashx?dokumanId=c2f 7d4c9–5cde-461e-b2ee-1966309073d2.
- Fırat, S. Ü., & Fırat, O. Z. (2017). Sanayi 4.0 Devrimi Üzerine Karşılaştırmalı Bir İnceleme: Kavramlar, Küresel Gelişmeler ve Türkiye. Toprak İşveren Dergisi, (114), 10–23.
- Fuchs, C. (2018). Industry 4.0: The Digital German Ideology. tripleC: Communication, Capitalism & Critique. Open Access Journal for a Global Sustainable Information Society, 16(1), 280–289.
- Gubán, M., & Kovács, G. (2017). Industry 4.0 Conception. Acta Technical Corviniensis-Bulletin of Engineering, 10(1), 111.
- IASP (2017). Date retrieved 23.10.2017, from https://www.iasp.ws/OurIndustry/Definitions.
- İçten, T., & Bal, G. (2017). Artırılmış Gerçeklik Teknolojisi Üzerine Yapılan Akademik Çalışmaların İçerik Analizi. Bilişim Teknolojileri Dergisi, 10(4), 401–415. (IASP 2017) Doyduk, H. B. B., & Tiftik, C. (2017). Nesnelerin İnterneti: Kapsamı, Gelecek Yönelimi ve İş Fırsatları. Third Sector Social Economic Review, 52(3), 127–147.
- Kai-Oliver Zander MS, M., & MEng, K. R. (2015). An Analysis of the Potential of Company's Inter-Cooperation on Shop-Floor Level Through the Utilization of Cyber-Physical Production Systems. In Proceedings of the International Annual Conference of the American Society for Engineering Management. (p.1). American Society for Engineering Management (ASEM).
- Kiran, V. (2016). Trends 2016: Big Data, IoT take the plunge. Voice & Data; New Delhi.
- Koçak, A., & Diyadin, A. (2018). Sanayi 4.0 Geçiş Süreçlerinde Kritik Başarı Faktörlerinin DEMATEL Yöntemi ile Değerlendirilmesi. Ege Akademik Bakis, 18(1), 107–120.
- Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges. Computers in Industry, 81, 11–25.
- Magruk, A. (2016). Uncertainty in the Sphere of the Industry 4.0-Potential Areas to Research. Business, Management and Education, 14(2), 275.
- Official Gazette 24454 (2001). Date retrieved 23.10.2017, from http://www.resmigazete.gov.tr/eskiler/2001/07/20010706.htm#1.
- Ozdogan, O. (2017). Endüstri 4.0. Ankara: Pusula yayın.
- Pekol, Ö., & Erbas, B. Ç. (2011). Patent Sisteminde Türkiye'deki Teknoparkların Yeri/Technopark in Turkey: Patent System Perspective. Ege Akademik Bakis, 11(1), 1327.
- Schwab, K. (2017). Dördüncü Sanayi Devrimi. Istanbul: Optimist.
- Siegel, D. S., Westhead, P., & Wright, M. (2003). Science Parks and The Performance of New Technology-Based Firms: A Review of Recent UK Evidence and an Agenda for Future Research. Small Business Economics, 20(2), 177–184.
- Soysal, M., & Pamuk, N. S. (2018). Yeni Sanayi Devrimi Endüstri 4.0 Üzerine Bir İnceleme. Verimlilik Dergisi, (1), 41–66.
- TÜBİTAK (2016). Ar-Ge Reform Paketi Tanıtım Toplantısı Yapıldı. Türkiye Bilimsel ve Teknolojik Araştırmalar Merkezi, 14 Ocak 2016. Date retrieved: 23.04.2017, from https://www.tubitak.gov. tr /tr/haber/ar-gereform-paketi-tanitim-programi-yapildi.
- Türkiye Odalar ve Borsalar Birliği (2016). Akıllı Fabrikalar Geliyor. TOBB Ekonomik Forum Dergisi, 259, 16–27.
- TÜSİAD & BCG (2016). Türkiye’nin Küresel Rekabetçiliği için Bir Gereklilik Olarak Sanayi 4.0: Gelişmekte Olan Ekonomi Perspektifi. İstanbul: TÜSİAD.
- An Evaluative Perspective from Institutional Logic and Pragmatism on the Relationship between Industry 4.0 and Outsourcing by Mustafa Aldülmetin DİNÇER, Yasemin ÖZDEMİR
- Adler, P. S. Making the HR Outsourcing Decision. MIT Sloan Management Review, 45(1), 2003, 53–60.
- Alexander, M., and D. Young, Strategic Outsourcing. Long Range Planning, 29(1), 1996,116–119.
- Alford, R. R. and R. Friedland,. Powers of Theory: Capitalism, the State, and Democracy. Cambridge: Cambridge University Press,1985.
- Arnold, U. New Dimensions of Outsourcing: A Combination of Transaction Cost Economics and the Core Competencies Concept. European Journal of Purchasing & Supply Management, 6(1), 2000, 23–29.
- Aron, R., E. K. Clemons, and S. Reddi, “Just Right Outsourcing: Understending and Managing Risk”, Journal of Management Information Systens, Vol. 22, Issue 2, 2005, Pp. 37–55 (Https://and.Tandfonline.Com/Doi/Abs/10.1080/07421222.2005.11045852, 28.08.2018)
- Arora, A., and A. Gambardella, Complementarity and External Linkages: The Strategies of the Large Firms in Biotechnology. the Journal of Industrial Economics, 1990, 361–379.
- Aubert, B.A., M. Patry, and S. Rivard, “A Transaction Cost Approach to Outsourcing Behavior: Some Empirical Evidence”, Information & Management, Vol. 30, 1996, Pp. 51–64.
- Aubert, B. A., M. Patry, and S. Rivard, “Assessing the Risk of IT Outsourcing”, Proceedings of the Thirty-First Hawai International Conference on System Sciences, 9 January 1998, Kohala Coast, USA. 1998.
- Bartodziej, C. J. The Concept Industry 4.0: An Empirical Analysis of Technologies and Applications in Production Logistics. Springer. 2016.
- Battilana, J. 2006. ‘Agency and Institutions: The Enabling Role of Individuals’ Social Position,’ Organization, Forthcoming.
- Beaulieu, M., Roy, J., & S. Landry, Logistics Outsourcing in the Healthcare Sector: Lessons from A Canadian Experience. Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences De l'Administration, 35(4), 2018, 635–648.DOI: 10.1002/CJAS.1469.
- Belcourt, M. “Outsourcing — the Benefits and the Risks”, Human Resource Management Review, Vol. 16, 2006, P. 269–279.
- Berger, P. and T. Luckmann, the Social Construction of Reality. New York: Doubleday Anchor. 1967.
- Crouch, C. Complementarıty, Morgan, G., Campbell, J., Crouch, C., Pedersen, O. K., & Whitley, R. (Eds.). In the Oxford Handbook of Comparative Institutional Analysis. Oxford University Press.2010.
- El Mokrini, A., E. Dafaoui, A. Berrado, and A. El Mhamedi, “An Approach to Risk Assessment for Outsourcing Logistics: Case of Pharmaceutical Industry”, IFAC-Papers Online, Vol. 49, Pp. 1239–1244, 2016.
- Greenwood, R. & C. R. Hinings, Understanding Strategic Change: The Contribution of Archetypes. Academy of Management Journal, 36(5), 1993,1052–1081.
- Gupta, U. G. & A. Gupta, Outsourcing the IS Function: Is It Necessary For Your Organization?, Information Systems Management, 9(3), 1992, 44–47.
- Gutek, G. Philosophical, Ideological, and theoretical Perspectives on Education. New Jersey: Pearson, 2014, pp. 76,100. ISBN 978–0–13–285238–8.
- Haour, G. Stretching the Knowledge‐Base of the Enterprise Through Contract Research. R&D Management, 22(2), 1992, 177–182.
- Heng, S. Industry 4.0. Upgrade Des Industriestandorts Deutschland Steht Bevor. In: DB Research Management. Frankfurt A. M., 2014.
- Hofmann, E., & M. RüSch, Industry 4.0 and the Current Status as well as Future Prospects on Logistics. Computers in Industry, 89, 2017, 23–34.
- Howells, J. Research and Technology Outsourcing, Technology Analysis & Strategic Management, 11:1, 1999, 17–29,
- Huff, S. L. Outsourcing of Information Services. Business Quarterly, 55(4), 1991, 62–65.
- Jackall, R. Moral Mazes: The World of Corporate Managers. International Journal of Politics, Culture, and Society, 1(4), 1988, 598–614.
- Kagermann, AND., AND. Wahlster, J. Helbig, Umsetzungsempfehlungen für das Zukunftsprojekt Industry 4.0. Abschlussbericht Des Arbeitskreises Industry 4.0. Deutschlands Zukunft Als Produktionsstandort Sichern. In: Promotorengruppe Kommunikation der Forschungsunion Wirtschaft – Wissenschaft. Berlin, 2013.
- Kakabadse, A., and N. Kakabadse. “Trends in Outsourcing: Contrasting USA and Europe”, European Management Journal Vol. 20, No. 2, 2002, Pp. 189–198.
- Kosnik, T., D. J. Wong-Mingji, & K. Hoover, Outsourcing Vs Insourcing in the Human Resource Supply Chain: A Comparison of Five Generic Models. Personnel Review, 35(6), 2006,671–684.
- Leeman, D., & D. Reynolds, Trust and Outsourcing: Do Perceptions of Trust Influence the Retention of Outsourcing Providers in the Hospitality Industry?, International Journal of Hospitality Management, 31(2), 2012, 601–608.
- Li-Jun, Z. “Research on Analysis and Control of Enterprise Logistics Outsourcing Risks”, Energy Procedia, Vol. 17,2012, Pp. 1268–1273.
- Masten. S, K. Crocker, Efficient Adaptation in Long-Term Contracts: Take or Pay Provisions For Natural Gas. American Economic Review,1985, 75,1085–1096.
- Mccauley, A. Know the Benefits and Costs of Outsourcing Services. Canadian HR Reporter, 13(17), 18–19. Meyer, John and., R. Richard Scott (Eds). 1983. Organizational Environments: Ritual and Rationality, Beverly Hills, CA: Sage, 2000.
- Meyer, J. and., J. Boli, G. M. Thomas, and F. O. Ramirez. ‘World Society and the Nation-State,’ American Journal of Sociology 103, 1997, 144–181.
- Ngwenyama, O. K., & N. Bryson, Making the Information Systems Outsourcing Decision: A Transaction Cost Approach to Analyzing Outsourcing Decision Problems. European Journal of Operational Research, 115(2),1999, 351–367.
- Oshima, M., T. Kao, & J. Tower, Achieving Post-Outsourcing Success. Human Resources Planning, 28(2), 7–12. Outsourcing and the Implications for Human Resource Development. (2000). Journal of Management Development, 19(8), 2005, 694–699.
- Quélin, B., & F. Duhamel, Bringing Together Strategic Outsourcing and Corporate Strategy: Outsourcing Motives and Risks. European Management Journal, 21(5), 2003, 647–661.
- Rennunga, F. M., C. T. Luminosua, and A. Draghici, “Strategic Management – Managing the Potential Complexity-Risks in Outsourcing”, Procedia Economics and Finance, Vol. 26, 2015, Pp. 757–763.
- Ringe, M. J. (1992). The Contract Research Business in the United Kingdom. The European Dimension. EUR 14578 EN. Research Evaluation. Science and Technology Policy Series.
- Scott, AND. R. [1995] 2001. Institutions and Organizations, 2nd Edn. Thousand Oaks, CA: Sage,1992.
- Scott, AND. R., M. Ruef, P. Mendel, and C. Caronna, Institutional Change and Health Care Organizations: From Professional Dominance to Managed Care. Chicago: University of Chicago Press, 2000.
- Spath, D. (Ed.), O. Ganschar, S. Gerlach, M. Hämmerle, T. Krause, S. Schlund, Studie: Produktionsarbeit Der Zukunft – Industrie 4.0 (2013). Retrieved June 8, 2015, From Http://and.Iao.Fraunhofer.De/Images/Iao-News/ Produktionsarbeit-Der-Zukunft.Pdf.
- Thornton, P. AND., & AND. Ocasio, Institutional Logics. The Sage Handbook of Organizational Institutionalism, 840, 2008, 99–128.,Pdf
- Wang, E. T. Transaction Attributes and Software Outsourcing Success: An Empirical Investigation of Transaction Cost theory. Information Systems Journal, 12(2), 2002, 153–181.
- Weick, K. E. Educational Organizations as Loosely Coupled Systems. Administrative Science Quarterly, 21, 1–19, 1976.
- Weick, K. E. Management of Organizational Change Among Loosely Coupled Elements. Inp. S. Goodman &As-Sociates (Eds.), Change in Organizations (Pp. 375–408). San Francisco: Jossey-Bass, 1982.
- William, J. The Meaning of Truth. Retrieved 5 March, 1909/2015.
- https://Tez.Yok.Gov.Tr/Ulusaltezmerkezi/Tezsorgusonucyeni.Jsp
- Usage of Enterprise Resource Planning (ERP) in Turkey and Information Safety by Recep Benzer, Emre Akar
- Al-Mashari, M., Al-Mudimigh, A., & Zairi, M. Enterprise resource planning: A taxonomy of critical factors. European journal of operational research, 146(2), 352–364. 2003.
- Alsmadi, I., Burdwell, R., Aleroud, A., Wahbeh, A., Al-Qudah, M. A., & Al-Omari, A. Introduction to Information Security. In Practical Information Security (pp. 1–16). Springer, Cham. 2018.
- Anonymous, Security and threats in ERP. Https://Cpm.Com.Tr/Tr/Erp-Blog/Erpde-Guvenlik-Ve-Tehditler. 2018.
- Avunduk, H., & Güleryüz, Ö. Enterprise Resource Planning (ERP) and an Analysis of the Effects to Managerial Decisions: A Qualitative Research in Textile Firm. Journal of Current Researches on Business and Economics, 8(1), 41–52. 2018.
- Aydoğan, E.. Enterprise Resource Planning, TSA Dergisi Yı l:2 S:2, Ağustos 2008, s.109. 2008
- Başaran, A. Cyberspace Arion Press (In Turkish). 2017.
- Başaran, A. Http://Alperbasaran.Com/Kurumsal-Kaynak-Planlama-Yazilimi-Erp-Guvenligi/. 2018.
- Braggs, S. ERP: the state of the industry. Arc. Insights 12 ECL, New York. 2005.
- Canbek Gürol, Sağıroğlu Şeref, Bilgi, Bilgi Güvenliği Ve Süreçleri Üzerine Bir İnceleme, Politeknik Dergisi, Cilt: 9, Sayı:3, 2006, S.165 4 Türkiye Bilişim Derneği, Bilişim Sistemleri Güvenliği El Kitabı, Sürüm 1.0, Ankara, Mayıs 2006, S.3 (In Turkish).
- Çetinkaya, M. Implementation of Information Security Management System in Institutions. Akademik Bilişim 2008, Çanakkale Onsekiz Mart Üniversitesi, Çanakkale, 30 Ocak- 01 Şubat 2008, S.511 (In Turkish). 2008.
- Demir, B. Information Security in the Accounting Information Systems. The Journal of Accounting and Finance, (26), 147–156. 2005.
- Erkan, Turan. Erman. ERP Enterprise Resource Planning. Ankara: Atılım Üniversitesi. (Turkish) Enterprise Resource Planning. 2008.
- Habertürk, https://www.haberturk.com/sap-ve-oracle-in-guvenlik-aciklari-binlerce-sirketi-tehlikeye-soktu-2076352-ekonomi alıntı tarihi: 26 Temmuz 2018. 2018
- İnal, İ. WEB based ERP for SME's: An evaluation of Turkey's ERP vendors, Msc Thesis. Balıkesir University Graduate School of Natural and Applied Sciences. 103 page. 2004.
- Keçek, G. & Yıldırım, E. Enterprise Resource Planning and The Importance For Company Electronic Journal of Social Sciences 8 :240–258. 2014.
- Laudon, C. K., & Laudon, P. J. Information Systems in the Enterprise, Managing the Digital Firm, 8/E. Prentice Hall. 2004.
- Loh TC, Koh SCL Critical elements for a successful enterprise resource planning implementation in small-and medium-sized enterprises. Int J Prod Res 42(17):3433–3455. 2004.
- Manettı J. How technology is transforming manufacturing. Production and Inventory Management Journal 42(1), 54–64. 2001.
- Montalbano, E. Onapsis Report Report: Cybercriminals target difficult-to-secure ERP systems with new attacks https://www.onapsis.com/research/reports/erp-security-threat-report 2018.
- Ross, J.W. and Vitale, M.R. The ERP revolution, surviving vs. Thriving. Information Systems Frontiers; special issue on The Future of Enterprise Resource Planning Systems 2(2), 233–241. 2000.
- Sumner, M., Enterprise resource planning, Upper Saddle River, New Jersey: Prentice-Hall. 2005.
- Usmanij, PA, Khosla R, Chu M-T Successful product or successful system? User satisfaction measurement of ERP software. J Intell Manuf 24(6):1131–1144. 2013.
- Vural, Y, Sağıroğlu Ş., A Review On Enterprise Information Security And Standards. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, Cilt 23, No 2, Ankara, 2008, S.509. 2008.
- Machine learning approaches for prediction of service times in health information systems by Mete Eminağaoğlu
- Aha, D. W., Kibler, D., & Albert, M. K. (1991). “Instance-based learning algorithms”, Machine Learning, Vol. 6 No. 1, pp. 37–66.
- Akaike, H. (1981). “Likelihood of a model and information criteria”, Journal of Econometrics, Vol. 16 No. 1, pp. 3–14.
- Bernardi, R. Constantinides, P., & Nandhakumar, J. (2017). “Challenging Dominant Frames in Policies for IS Innovation in Healthcare through Rhetorical Strategies”, Journal of the Association for Information Systems, Vol. 18 No. 2, pp. 81–112.
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning, Springer Science + Business Media LLC, New York.
- Breil, B. Fritz, F., Thiemann, V., & Dugas, M. (2011). “Mapping turnaround times (TAT) to a generic timeline: a systematic review of TAT definitions in clinical domains”, BMC Medical Informatics and Decision Making, Vol. 11 No. 34, pp. 1–12.
- Broomhead, D. S., & Lowe, D. (1988). “Radial basis functions, multi-variable functional interpolation and adaptive networks (Technical report)”, Royal Signals and Radar Establishment, Report no. 4148, UK.
- Buduma, N., & Locascio, N. (2017). Fundamentals of Deep Learning, O’Reilly Media, Inc., USA.
- Chen, S. (2014). "Information needs and information sources of family caregivers of cancer patients", Aslib Journal of Information Management, Vol. 66 No. 6, pp. 623–639.
- Dasu T. & Johnson, T. (2003). Exploratory Data Mining and Data Cleaning, John Wiley & Sons Inc., New Jersey.
- Eibe, F. (2014). Fully supervised training of Gaussian radial basis function networks in WEKA. Retrieved from https://www.cs.waikato.ac.nz/~eibe/pubs/ rbf_networks_in_weka_ description.pdf
- Eminağaoğlu M., & Vahaplar A. (2018). “Turnaround Time Prediction for a Medical Laboratory Using Artificial Neural Networks”, International Journal of Informatics Technologies, Vol.11 No. 4, pp: 357–368.
- Fieri, M., Ranney, N. F., Schroeder, E. B., Van Aken, E. M., & Stone, A. H. (2010). “Analysis and improvement of patient turnaround time in an emergency department”, in Proceedings of the 2010 IEEE Systems and Information Engineering Design Symposium, University of Virginia Charlottesville, VA, USA, 2010, pp. 239–244.
- Goodfellow, A., Bengio, Y., & Courville, A. (2017). Deep Learning, The MIT Press, USA.
- Goswami, B., Singh, B., Chawla, R., Gupta, V. K., & Mallika, V. (2010). “Turnaround time (TAT) as a benchmark of laboratory performance”, Indian Journal of Clinical Biochemistry, Vol. 25 No. 4, pp. 376–379.
- Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks, Springer-Verlag., Berlin.
- Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques, 2nd edition, Morgan Kaufmann Publishers, San Francisco.
- Hand, C., Mannila, H., & Smyth P. (2001). Principles of Data Mining, the MIT Press, London.
- Hassanpour, M., Vaferi, B., & Masoumi, M. E. (2018). “Estimation of pool boiling heat transfer coefficient of alumina water-based nanofluids by various artificial intelligence (AI) approaches”, Applied Thermal Engineering, Vol. 128, pp. 1208–1222.
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning, Data Mining, Inference and Prediction, 2nd edition, Springer, New York.
- Haykin, S. (2009). Neural Networks and Learning Machines, 3rd edition, Pearson Education, Inc., New Jersey.
- He, C., Fan, X., & Li, Y. (2013). “Toward Ubiquitous Healthcare Services with a Novel Efficient Cloud Platform”, IEEE Transactions on Biomedical Engineering, Vol. 60 No. 1, pp. 230–234.
- Hendrickx, I., & Antal, V. B. (2005). "Hybrid algorithms with Instance-Based Classification", in Proceedings of 16th European Conference on Machine Learning Machine Learning: ECML2005, Porto, Portugal, 2005, pp. 158–169.
- Hope, T., Yehezkel, S. R., & Lieder, I. (2017). Learning TensorFlow: A Guide to Building Deep Learning Systems, O’Reilly Media, Inc., USA.
- Huang, W., Lai, K. K., Nakamori, Y., & Wang, S. (2004). “Forecasting Foreign Exchange Rates with Artificial Neural Networks: A Review”, International Journal of Information Technology & Decision Making, Vol. 3 No. 1, pp. 145–165.
- Köksal, H., Eminağaoğlu, M., & Türkoğlu, B. (2016) “An Adaptive Network-Based Fuzzy Inference System for Estimating the Duration of Medical Services: A Case Study”, in Proceedings of 10th IEEE International Conference on Application of Information and Communication Technologies, Baku, Azerbaijan, pp: 801–806.
- Kumar, S. (2017). Neural Networks – A Classroom Approach, 2nd ed., McGraw-Hill, New Delhi.
- Larose, D. T. (2005). Discovering Knowledge in Data – An Introduction to Data Mining, John Wiley & Sons Inc., New Jersey.
- Larose, D. T. (2006). Data Mining Methods and Models, John Wiley & Sons Inc., New Jersey.
- Lyon, A. R., Wasse, J. K., Ludwig, K., Zachry, M., Bruns, E. J., Unutzer, J., & McCauley, E. (2016). “The Contextualized Technology Adaptation Process (CTAP): Optimizing Health Information Technology to Improve Mental Health Systems”, Administration and Policy in Mental Health and Mental Health Services Research, Vol. 43 No. 3, pp. 394–409.
- Mitchell, T. M. (2017). Machine Learning, McGraw-Hill, India.
- Nedjah, N., Luiza, M. M., & Kacprzyk, J. (2009). Innovative Applications in Data Mining, Springer-Verlag, Berlin.
- Ng, X. W., & Chung, W. Y. (2012). “VLC-based Medical Healthcare Information System”, Biomedical Engineering: Applications, Basis and Communications, Vol. 24 No. 2, pp. 155–163.
- Patterson, J., & Gibson, A. (2017). Deep Learning: A Practitioner’s Approach, O’Reilly Media, Inc., USA.
- Python, (2019). Programming language. Retrieved from https://www.python.org/downloads/ windows/
- Olivas, E. S., Guerrero, J. D. M., Sober, M. M., Benedito, J. R. M., & Lopez, A. J. S. (2009). Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, IGI Publishing, USA.
- Quinlan, R. J. (1992). “Learning with Continuous Classes”, in Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Singapore, 1992, pp. 343–348.
- Ravinesh, C. D., & Şahin, M. (2015). “Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia”, Applied Soft Computing, Vol. 153, pp. 512–525.
- Reyes, J., Morales-Esteban, A., & Martinez-Alvarez, F. (2013). “Neural networks to predict earthquakes in Chile”, Applied Soft Computing, Vol. 13 No. 2, pp. 1314–1328.
- Samudrala, S. (2019). Machine Intelligence: Demystifying Machine Learning, Neural Networks and Deep Learning, Notion Press, Chennai.
- Scagliarini, M., Apreda, M., Wienand, U., & Valpiani, G. (2016). "Monitoring operating room turnaround time: a retrospective analysis", International Journal of Health Care Quality Assurance, Vol. 29 No. 3, pp. 351–359.
- Sinreich, D., & Marmor, Y. (2005). "Ways to reduce patient turnaround time and improve service quality in emergency departments", Journal of Health Organization and Management, Vol. 19 No. 2, pp. 88–105.
- Söderholm, H.M., & Sonnenwald, D. H. (2010). "Visioning Future Emergency Healthcare Collaboration: Perspectives from Large and Small Medical Centers", Journal of The American Society for Information Science and Technology, Vol. 61 No. 9, pp. 1808–1823.
- Storrow, A. B., Zhou, C., Gaddis, G., Han, J. H., Miller, K., Klubert, D., Laidig A., & Aronsky, D. (2008). “Decreasing Lab Turnaround Time Improves Emergency Department Throughput and Decreases Emergency Medical Services Diversion: A Simulation Model”, Academic Emergency Medicine, Vol. 15 No. 11, pp. 1130–1135.
- Stvilia, B., Mon, L., & Yi, Y. J. (2009). "A Model for Online Consumer Health Information Quality", Journal of the American Society for Information Science and Technology, Vol. 60 No. 9, pp. 1781–1791.
- Tensorflow (2019). An open source machine learning framework for everyone. Retrieved from https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md
- Wang, Y. & Witten, I. H. (1997). “Induction of model trees for predicting continuous classes”, in Poster papers of the 9th European Conference on Machine Learning, Prague, Czech Republic, 1997.
- Weka (2019). Data Mining Software in Java. Retrieved from http://www.cs.waikato.ac.nz/ ml/weka/
- Willoughby, K. A., Chan, B. T. B., & Strenger, M. (2010). "Achieving wait time reduction in the emergency department", Leadership in Health Services, Vol. 23 No. 4, pp. 304–319.
- Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques, 3rd edition, The Morgan Kaufmann Series in Data Management Systems, Burlington.
- Wold, S, Sjöström, M., & Eriksson, L. (2001). "PLS-regression: a basic tool of chemometrics", Chemometrics and Intelligent Laboratory Systems, Vol. 58 No. 2, pp. 109–130.
- Yeh, I-C., & Lien, C. (2009). “The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients”, Expert Systems with Applications, Vol. 36, pp. 2473–2480.
- Yu, L., Lai, K. K., & Wang, S. Y. (2006). “Currency Crisis Forecasting with General Regression Neural Networks”, International Journal of Information Technology & Decision Making, Vol. 5 No. 3, pp. 437–454.
- Application of Artificial Neural Networks in Growth Models by Semra Benzer, Recep Benzer
- Acatech, “Acatech: Recommendations for Implementing the Strategic Initiative Industrie 4.0”, Final Report of the Industry 4.0 Working Group, http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf (15.12.2018). 2013.
- Altındağ, A., Shah, S.L., Yigit, S., The growth features of tench (Tinca tinca L., 1758) in Bayındır Dam Lake, Ankara, Turkey. Turk J Zool, 26, 385–391. 2002.
- Altındağ, A., Yiğit, S., Ahıska, S., Özkurt, Ş., The Growth Features of Tench (Tinca tinca L., 1758) in the Kesikköprü Dam Lake. Turk J Zool, 22, 311- 318. 1998.
- Andrade, H.A. and Campos, R.O., Allometry coefficient variations of the length-weight relationship of skipjack tuna (Katsuwonus pelamis) caught in the southwest South Atlantic. Fish.Res., 55: 307–312. 2002.
- Andrews, R., Diederich, J., & Tickle, A. B. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-based systems, 8(6), 373–389. 1995.
- Bahçecitapar, M., and Aktaş, S. Use of linear mixed model in multicollinearity and an application. Sakarya University Journal of Science, 21(6), 1349–1359. 2017.
- Balık, İ., Çubuk, H., Çınar, Ş., Özkök, R., Population structure, growth, mortality and estimated stock size of the introduced tench, Tinca tinca (L.), population in Lake Beyşehir, Turkey. J Appl Ichthyol, 25, 206–210. 2009.
- Balık, S., Sarı, H.M., Ustaoğlu, M.R., Ilhan, A., The structure, mortality and growth of the tench (Tinca tinca L., 1758) in Çivril Lake, Denizli, Turkey. Turk J Vet Anim Sci, 28, 973–979. 2004.
- Banger, G. Industry 4.0 and Smart Business, Dorlion Press., Ankara (In Turkish). 2016.
- Benzer S. and Benzer R., Evaluation of growth in pike (Esox lucius L., 1758) using traditional methods and artificial neural networks. Appl Ecol Environ Res, 14(2): 543–54. 2016.
- Benzer S., Benzer R. and Günay A.Ç., Artificial neural networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanlı Dam Lake. Biologia, 72(5): 527–35. 2017.
- Benzer, R. and Benzer, S., Application of artificial neural network into the freshwater fish caught in Turkey. International Journal of Fisheries and Aquatic Studies, 2(5), 341–346. 2015.
- Benzer, R., Population Dynamics Forecasting Using Artificial Neural Networks. Fresenius Environmental Bulletin, 12:1–15. 2015.
- Benzer, R., and Benzer, S. Alternative approaches for growth models: Artificial neural networks. 26th Signal Processing and Communications Applications Conference (SIU) (pp. 1–4). IEEE. 2018.
- Benzer, R., and Benzer, S., Growth and length–weight relationships of Pseudorasbora parva (Temminck & Schlegel, 1846) in Hirfanlı Dam Lake: Comparison with traditional and artificial neural networks approaches. Iranian Journal of Fisheries Sciences. DOI:10.22092/ijfs.2018.119889. 2019.
- Benzer, S. and Benzer, R., Comparative growth models of big-scale sand smelt (Atherina boyeri Risso, 1810) sampled from Hirfanlı Dam Lake, Kırşehir, Ankara, Turkey. Computational Ecology and Software 7(2): 82–90. 2017.
- Benzer, S., and Benzer, R. New Perspectives for Predicting Growth Properties of Crayfish (Astacus leptodactylus Eschscholtz, 1823) in Uluabat Lake. Pakistan Journal of Zoology, 50(1), 35–35. 2018.
- Benzer, S., Gül, A., Yılmaz, M., Growth Properties of Tench (Tinca tinca, L., 1758) Living in Kapulukaya Dam Lake, Turkey. Kastamonu Educ J, 18, 839–848. 2010.
- Benzer, S., Karasu Benli, Ç. and Benzer R., The comparison of growth with length-weight relation and artificial neural networks of crayfish, Astacus leptodactylus, in Mogan Lake. J Black Sea/Mediter Environ, 21(2): 208–23. 2015.
- Benzer, Ş.S., Gül, A., Yılmaz, M. Growth Properties of Tench (Tinca tinca, L., 1758) Living in Hirfanlı Reservoir (Kırşehir, Turkey). Iran J Fish Sci, 8, 219–224. 2009.
- Beyer, J.E., On length˗weight relationships: Part II. Computing mean weights from length statistics. Fishbyte, 9: 50˗54. 1991.
- Bon, A.T., Hui, H.S. Industrial Engineering Solution in the Industry: Artificial Neural Network Forecasting Approach. Proceedings of the International Conference on Industrial Engineering and Operations Management Rabat, Morocco, April 11–13, 2017. 2017.
- Brosse, S., Guegan, J., Tourenq, J. and Lek S., The Use of Artificial Neural Networks to Assess Fish Abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol Model., 120(2–3):299–311. 1999.
- Cabreira, A. G., Tripode, M., Madirolas, A. Artificial neural networks for fish-species identification. ICES Journal of Marine Science, 66(6), 1119–1129. 2009.
- Demirsoy, A., Basic Rules of Life, Vertebrates, (in Turkish). Hacettepe University Publication. III A/55: pp 684. 1998.
- Deval, M. C., Bök, T., Ateş, C., & Tosunoğlu, Z.. Length-based estimates of growth parameters, mortality rates, and recruitment of Astacus leptodactylus (Eschscholtz, 1823) (Decapoda, Astacidae) in unexploited inland waters of the northern Marmara region, European Turkey. Crustaceana, 80(6), 655–665. 2007
- Erguden Alagoz, S., Goksu, M.Z.L., Age, growth and sex ratio of tench Tinca tinca (L., 1758) in Seyhan Dam Lake, Turkey. J Appl Ichthyol, 26, 546 -549. 2010.
- Etchison, L., Jacquemin, S. J., Allen, M., Pyron, M. Morphological variation of rusty crayfish Orconectes rusticus (Cambaridae) with gender and local scale spatial gradients. International Journal of Biology 4 (2): 163˗171. 2012.
- Fish, K. E., Barnes, J. H., & AikenAssistant, M. W. Artificial neural networks: a new methodology for industrial market segmentation. Industrial Marketing Management, 24(5), 431–438. 1995.
- Geldiay, R. and Balık, S., Freshwater Fishes of Turkey, 3. Edition. Ege University press, No: 46, Izmir, 532 p. 1996.
- Gentry, T.W., Wiliamowski B.M. and Weatherford L.R., A comparison of traditional forecasting techniques and neural networks. Intelligent Engineering Systems Through Artificial Neural Networks, 5, 765–770. 1995.
- Gillet, C. and Laurent, P.J., Tail length variations among noble crayfish (Astacus astacus (L)) populations. Freshwater Crayfish, 10: 31–36. 1995.
- Goethals, P. L., Dedecker, A. P., Gabriels, W., Lek, S., & De Pauw, N. Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquatic Ecology, 41(3), 491–508. 2007.
- Hopgood A.A. Intelligent Systems for Engineers and Scientists. CRC Press, Florida, 461 pp. 2000.
- Innal, D., Population Structures and Some Growth Properties of Three Cyprinid Species [Squalius cephalus (Linnaeus, 1758); Tinca tinca (Linnaeus, 1758) and Alburnus escherichii Steindachner, 1897] Living in Camkoru Pond (Ankara-Turkey), Kafkas Univ Vet Fak Derg, 16, 297–304. 2010.
- ITRE Industry 4.0, European Parliament’s Committee on Industry, Research and Energy”,http://www.europarl.europa.eu/RegData/etudes/STUD/2016/570007/IPOL_STU(2016)570007_EN.pdf (15.12.2018) 2016.
- Joy, K.M. and Death, R.G., Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural Networks. Freshwater Biol., 49(8):1306–1052. 2004.
- Kagermann, H., Lukas, W. and Wahlster, W., Industrie 4.0 -Mit dem Internet der Dinge auf dem Weg zur 4. Industriellen Revolution, Inhalte der Ausgabe Nr. 13/2011,VDI Nachrichten, Berlin. 2011.
- Kılıç, S., Becer, Z. A. Some Growth Characters of Tench (Tinca tinca L., 1758) in Lake Yeniçaga, Bolu, Turkey. Journal of Applied Biological Sciences, 7(3). 2013.
- Krenker, A., BešTer, J. and Kos, A., Introduction to the Artificial Neural Networks, Artificial Neural Networks – Methodological Advances and Biomedical Applications, Prof. Kenji Suzuki (Ed.)., ISBN: 978–953–307–243–2. 2011.
- Lagler, K.F., Freshwater fishery biology. W.M.C. Brown Company, Dubuque, IA. 421. 1966.
- Lek, S., and Guégan, J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecological modelling, 120(2–3), 65–73. 1999.
- Lewis, C.D. Industrial and business forecasting methods. London: Butterworths. 1982.
- Lindqvist, O.V. and Lahti, E., On the sexual dimorphism and condition index in the crayfish Astacus astacus L. in Finland. Freshwater Crayfish., 5: 3–11. 1983.
- Maravelias, C.D., Haralabous, J. and Papaconstantinou, C., Predicting demersal fish species distributions in the Mediterranean Sea using artificial neural networks. Mar Ecol., 255:249–258. 2003.
- Mastrorillo, S., Lek, S., Dauba, F. and Belaud, A., The use of artificial neural networks to predict the presence of small-bodied fish in river. Freshwater Biol., 38: 237–246. 1997.
- Mendes, B., Fonseca, P. and Campos, A., Weight length relationships for 46 fish species of the Portuguese west coast. J. Appl. Ichthyol., 20: 355–361. 2004.
- Moutopoulos, D. K., Stergiou, K. I. Length˗weight and length˗length relationships of fish species from Aegean Sea (Greece). J. Appl. Ichthyol. 18: 200˗203. 2002.
- Nikolsky, G.V., The ecology of fishes (translated by L. Birkett). Academic Press, London, pp 352. 1963.
- Obach, M., Wagner, R., Werner, H. and Schmidt, H.H., Modelling population dynamics of aquatic insects ith artificial neural networks. Ecol Model., 146:207–217. 2001.
- Olden, J. D., & Jackson, D. A. Fish–habitat relationships in lakes: gaining predictive and explanatory insight by using artificial neural networks. Transactions of the American Fisheries Society, 130(5), 878–897. 2001.
- Olsson, K., Dynamics of omnivorous crayfish in freshwater ecosystems. Ph.D. thesis. Department of Ecology, Limnology, Lund Univ., 119 pp. 2008.
- Ouali, D., Chebana, F., & Ouarda, T. B. Fully nonlinear statistical and machine‐learning approaches for hydrological frequency estimation at ungauged sites. Journal of Advances in Modeling Earth Systems, 9(2), 1292–1306. 2017.
- Park, Y.S., Verdonschot, P.F.M., Chon, T.S. and Lek, S., Patterning and predicting aquatic macro invertabrate diversities using artificial neural network. Water Res., 37: 1749–1758. 2003.
- Pimpica, E., Pinos, B., Growth of Female Tench, Tinca tinca (L.,1758) in Lake Dgal Wielki, NE Poland. Folia Zool, 48, 143–148. 1999.
- Pompei, L., Franchi, E., Giannetto, D., Lorenzoni, M., Growth and reproductive properties of tench, Tinca tinca Linnaeus, 1758 in Trasimeno Lake (Umbria, Italy), Knowl Manag Aquat Ec, 406, 1–13. 2012.
- Primavera, J.H., Parado-Estepa, F.D. and Lebata, J.L., Morphometric relationship of length and weight of giant tiger prawn Penaeus monodon according to life stage, sex and source. Aquaculture, 164: 67–75. 1998.
- Ricker, W.E., Linear regressions in fishery research. J Fish Res Board Can., 30:409–434. 1973.
- Rocha, J. C., Passalia, F. J., Matos, F. D., Takahashi, M. B., de Souza Ciniciato, D., Maserati, M. P., ... Nogueira, M. F. G. A method based on artificial intelligence to fully automatize the evaluation of bovine blastocyst images. Scientific Reports, 7(1), 7659. 2017.
- Rosa, H., A synopsis of the biological data on the tench, Tinca tinca (L., 1758). FAO 58, 951. 1958.
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J., Learning internal representations by error propagation in Parallel Distributed Processing. Explorations in the Microstructure of Cognition MIT Press, 1:318–362. 1986.
- Sarı, M. Artificial Neural Networks And Sales Demand Forecasting Application In The Automotive Industry. Msc Thesis. Sakarya University. 2016.
- Saygı B.Y, Demirkalp, F.Y. Trophic status of shallow Yeniçağa Lake (Bolu, Turkey) in relation to physical and chemical environment. Fresenius Environmental Bulletin. 13:385 -393. 2004.
- Sholahuddin, A., Ramadhan, A. P., & Supriatna, A. K. The Application of ANN-Linear Perceptron in the Development of DSS for a Fishery Industry. Procedia Computer Science, 72, 67–77. 2015.
- Sinis, A.I., Meunier, F.J., Vieillot, H.F., Comparision of sclaes, opercular bones, and Vertabrae to Determine Age and Population Structure in Tench, Tinca tinca (L., 1758) (Pisces, teleostei), Israel J Zool, 45, 453–465.1999.
- Skurdal, J. and Qvenild, T. Growth, maturity and fecundity of Astacus astacus in Lake Steinsfjorden, In: Freshwater Crayfish (Eds., J. Skurdal and T. TougbØl), Norway, pp. 182–186. 1986.
- Sun, L., Xiao, H., Li, S. and Yang, D., Forecating fish stock recruitment and planning optimal harvesting strategies by using neural network. Journal of Computers, 4(11):1075–1082. 2009.
- Suryanarayana, I., Braibanti, A., Rao, R.S., Ramamc, V.A., Sudarsan, D. and Rao, G.N., Neural networks in fisheries research. Fish Res., 92:115–139. 2008.
- Tekin, M. Numerical Methods (Computer Analysis). (Updated 6. Edition). Konya: Günay Ofset. (Turkish). 2008.
- Teles, L. O., Vasconcelos, V., Pereira, E., & Saker, M. Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks. Environmental Management, 38(2), 227–237. 2006.
- Tosunoğlu, Z., Aydın, C., Özaydın, O. and Leblebici, S., Trawl codend mesh selectivity of braided PE material for Parapenaeus longirostris (Lucas, 1846) (Decapoda, Penaeidae). Crustaceana, 80: 1087–1094. 2007.
- Tureli Bilen, C, Kokcu, P. and Ibrikci, T., Application of Artificial Neural Networks (ANNs) for Weight Predictions of Blue Crabs (Callinectes sapidus Rathbun, 1896) Using Predictor Variables. Mediterranean Marine Science, 12(2):439–446. 2011.
- Verdiell-Cubedo, D., Oliva-Paterna, F.J. and Torralva, M., Length-weight relationships for 22 fish species of the Mar Menor coastal lagoon (Western Mediterranean Sea). Journal of Applied Ichthyology, 22: 293–294. 2006.
- Westman, K., Savolainen, R., Growth of the signal crayfish Pacifastacus leniusculus, in a small forest lake in Finland. Boreal Environ. Res. 7, 53–61. 2002.
- Witt, S.F. and Witt C.A. Modeling and Forecasting Demand in Tourism. Londra: Academic Press. 1992.
- Wright, R.M., Giles, N. The population biology of tench, Tinca tinca (L.) in two gravel pit lakes. J Fish Biol, 38, 17–28. 1991.
- Alternative approaches to traditional methods for growth parameters of fisheries industry: Artificial Neural Networks by Recep Benzer, Semra Benzer
- Aksu, Ö. and Harlioğlu, M.M., The Effect of Placing Hides into the Natural Habitat on Astacus Leptodactylus (Eschscholtz, 1823) Harvest. Ecological Life Sciences, 11(2), 1–10. 2016.
- Andrade, H.A. and Campos, R.O., Allometry coefficient variations of the length-weight relationship of skipjack tuna (Katsuwonus pelamis) caught in the southwest South Atlantic. Fish.Res., 55: 307–312. 2002.
- Andrews, R., Diederich, J., & Tickle, A. B. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-based systems, 8(6), 373–389. 1995.
- Aydin, H., Harlioğlu, M.M. and Deniz, T., An investigation on the population parameters of freshwater crayfish (Astacus leptodactylus Esch., 1823) in Lake İznik (Bursa). Turkish Journal of Zoology, 39(4), 660–668. 2015.
- Azari, M.A., Seidgar, M. and Mohebbi, F., Population dynamics of freshwater crayfish (Astacus leptodactylus) in Aras reservoir, Iran. Environ. Resourc. Res., 3: 15–26. 2015.
- Azari, S., Jhin, G., Papini, M. and Spelt, J.K., Fatigue threshold and crack growth rate of adhesively bonded joints as a function of load/displacement ratio. Composites Part A 57, 59–66. 2014.
- Balık, S., Ustaoğlu, M.R., Sarı H.M., Berber, S., Determination of traits some growth and morphometric of crayfish (Astacus leptodactylus Eschscholtz, 1823) at Demirköprü Dam Lake (Manisa). EU Journal of Fisheries & Aquatic Sciences, 22(1–2): 83–89. 2005.
- Baran İ, Soylu E., Crayfish plague in Turkey (short communication). J Fish Dis 12: 193–197. 1989.
- Benzer, R. Population Dynamics Forecasting Using Artificial Neural Networks. Fresenius Environmental Bulletin, 24(2), 460–466. 2015.
- Benzer, S and Benzer, R., Determine Some Morphological Characteristics of Crayfish (Astacus Leptodactylus Eschscholtz, 1823) with Tradional Methods and Artificial Neural Networks in Dikilitas Pond, Ankara, Turkey. Fresenius Environmental Bulletin, 24 (11A):3727–3735. 2015.
- Benzer, S., Karasu Benli, Ç., Benzer, R., The comparison of growth with length-weight relation and artificial neural networks of crayfish, Astacus leptodactylus, in Mogan Lake. J. Black Sea/Mediterranean Environment, 21(2):208–223. 2015.
- Benzer, S and Benzer, R., Evaluation of growth in pike (Esox lucius L., 1758) using traditional methods and artificial neural networks. Applied Ecology and Environmental Research; 14(2), 543–554. 2016.
- Benzer, S, Benzer, R and Gül A., Developments in Science and Engineering. St. Kliment Ohridski University Presssofia, Chaper 5: Artificial Neural Networks Application for Biological Systems: The Case Study of Pseudorasbora parva.; A. ISBN 978–954–07–4137–6. 2016.
- Benzer, S., Benzer, R., and Günal, A. Ç. Artificial Neural Networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanlı Dam Lake. Biologia, 72(5), 527–535. 2017.
- Benzer, S. and Benzer, R. New Perspectives for Predicting Growth Properties of Crayfish (Astacus leptodactylus Eschscholtz, 1823) in Uluabat Lake. Pakistan J. Zool. 50(1):35–45. 2018.
- Berber, S. and Balık, S., Determination of traits some growth and morphometric of crayfish (Astacus leptodactylus Eschscholtz, 1823) at Manyas Lake (Balıkesir), EU Journal of Fisheries & Aquatic Sciences, 23(1–2):83–91. 2006.
- Berber, S. and Balık, S., The length-weight relationships, and meat yield of crayfish (Astacus leptodactylus Eschcholtz, 1823) population in Apolyont Lake (Bursa, Turkey). J Fish Sci., 3(2):86–99. 2009.
- Beyer, J.E., On length˗weight relationships: Part II. Computing mean weights from length statistics. Fishbyte, 9: 50˗54. 1991.
- Bolat, Y., Mazlum, Y., Demirci, A., & Koca, H. U. Estimating the population size of Astacus leptodactylus (Decapoda: Astacidae) by mark-recapture technique in Egirdir lake, Turkey. African Journal of Biotechnology, 10(55), 11778. 2011.
- Bon, A.T., Hui, H.S. Industrial Engineering Solution in the Industry: Artificial Neural Network Forecasting Approach. Proceedings of the International Conference on Industrial Engineering and Operations Management Rabat, Morocco, April 11–13, 2017.
- Bök, T. D., Aydın, H., & Ateş, C. A study on some morphological characteristics of Astacus leptodactylus (Eschscholtz 1823) in seven different inland waters in Turkey. Journal of Black Sea/Mediterranean Environment, 19(2). 2013.
- Brosse, S., Guegan, J., Tourenq, J. and Lek S., The Use of Artificial Neural Networks to Assess Fish Abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol Model., 120(2–3):299–311. 1999.
- Cabreira, A. G., Tripode, M., Madirolas, A. Artificial neural networks for fish-species identification. ICES Journal of Marine Science, 66(6), 1119–1129. 2009.
- Demirol, F., Gündüz, F., Yüksel, F., Çoban, M.Z., Abdulmutalip, B.E.R.İ., Kurtoğlu, M. and Küçükyilmaz, M., The Investigation of By-catch and Discard Rates in Crayfish (Astacus leptodactylus Eschscholtz, 1823) Catching in the Keban Dam Lake. Journal of Limnology and Freshwater Fisheries Research, 1(2), 69–74. 2015.
- Deniz, T.B., Aydın, C. and Ateş, C., A study on some morphological characteristics of Astacus leptodactylus (Eschscholtz 1823) in seven different inland waters in Turkey. J Black Sea/Mediterranean Environment., 19(2):190˗205. 2013.
- Deval, M. C., Bök, T., Ateş, C., & Tosunoğlu, Z. Length-based estimates of growth parameters, mortality rates, and recruitment of Astacus leptodactylus (Eschscholtz, 1823)(Decapoda, Astacidae) in unexploited inland waters of the northern Marmara region, European Turkey. Crustaceana, 80(6), 655–665. 2007.
- Dopico, M., Gomez, A., De la Fuente, D., García, N., Rosillo, R., & Puche, J. A vision of industry 4.0 from an artificial intelligence point of view. In Proceedings on the International Conference on Artificial Intelligence (ICAI) (p. 407). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp). 2016.
- Ekici, B.B. and Aksoy, U.T., Prediction of building energy consumption by using artificial neural networks, Advances in Engineering Software, 40: 356–362. 1993.
- Etchison, L., Jacquemin, S. J., Allen, M., Pyron, M. Morphological variation of rusty crayfish Orconectes rusticus (Cambaridae) with gender and local scale spatial gradients. International Journal of Biology 4 (2): 163˗171. 2012.
- Fish, K. E., Barnes, J. H., & AikenAssistant, M. W. Artificial neural networks: a new methodology for industrial market segmentation. Industrial Marketing Management, 24(5), 431–438. 1995.
- Furst, M., Future perspectives for Turkish crayfish fishery. I Unv J Fish Aquat Sci 2: 139–147. 1988.
- Füreder, L., Oberkofler, B., Hanel, R., Leiter J. and Thaler, B., The freshwater crayfish Austropotamobius pallipes in South Tyrol: Heritage species and bioindicator. B Fr Peche Piscic., 370–371:79−95. 2003.
- Gentry, T.W., Wiliamowski B.M. and Weatherford L.R., A comparison of traditional forecasting techniques and neural networks. Intelligent Engineering Systems Through Artificial Neural Networks, 5, 765–770. 1995.
- Gillet, C. and Laurent, P.J., Tail length variations among noble crayfish (Astacus astacus (L)) populations. Freshwater Crayfish, 10: 31–36. 1995.
- Goethals, P. L., Dedecker, A. P., Gabriels, W., Lek, S., & De Pauw, N. Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquatic Ecology, 41(3), 491–508. 2007.
- Gutiérrez-Yurrita, P.J., Martínez, J.M., Bravo-Utrera, M.A., Montes, C., Ilhéu M. and Bernardo, J.M., The status of crayfish populations in Spain and Portugal. Pages 161–192 in F. Gherardi, and D. M. Holdich, editors. Crayfish in Europe as alien species: how to make the best of a bad situation? A. A. Balkema, Rotterdam, Netherlands. 1999.
- Harlioğlu, M. M. Comparative biology of the signal crayfish, Pacifastacus leniusculus (Dana), and the narrow-clawed crayfish, Astacus leptodactylus Eschscholtz (Doctoral dissertation, University of Nottingham). 1996.
- Harlioğlu, M.M., The Relationships between Length-Weight, and Meat Yield of Freshwater Crayfish, Astacus leptodactylus Eschscholtz, in the Ağın Region of Keban Dam Lake. Turk J Zool., 23: 949–958. 1999.
- Harlioğlu, M.M., The present situation of freshwater crayfish, Astacus leptodactylus (Eschscholtz, 1823) in Turkey. Aquaculture, 230:181–187. 2004.
- Harlioğlu, M.M. and Harlioğlu, A.G., The comparison of morphometric analysis and meat yield contents of freshwater crayfish, Astacus leptodactylus (Esch 1823) caught from İznik, Eğirdir Lakes and Hirfanlı Dam Lake, Science and Engineering Journal of Fırat University, 17(2):412–423. 2005.
- Hogger, J. B., Ecology, population biology and behaviour, In: D.M. Holdich and R.S. Lowery (eds.), Freshwater Crayfish, Biology, Menagement and Exploitation, Cambridge, 114–144. 1988.
- Holdich, D.M. and Lowery, R.S., Freshwater Crayfish – Biology, Management and Exploitation. Chapman and Hall, London. 498 p. 1988.
- Hopgood A.A. Intelligent Systems for Engineers and Scientists. CRC Press, Florida, 461 pp. 2000.
- Joy, K.M. and Death, R.G., Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural Networks. Freshwater Biol., 49(8):1306–1052. 2004.
- Kaastra, I., Boyd, M. Designing a neural network for forecasting financial and economic time series. Neurocomputing, 10(3), 215–236. 1996.
- Kılıç, S., Becer, Z. A. Some Growth Characters of Tench (Tinca tinca L., 1758) in Lake Yeniçaga, Bolu, Turkey. Journal of Applied Biological Sciences, 7(3). 2013.
- Krenker, A., BešTer, J. and Kos, A., Introduction to the Artificial Neural Networks, Artificial Neural Networks – Methodological Advances and Biomedical Applications, Prof. Kenji Suzuki (Ed.)., ISBN: 978–953–307–243–2. 2011.
- Lek, S., & Guégan, J. F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecological modelling, 120(2–3), 65–73. 1999.
- Lewis, C.D. Industrial and business forecasting methods. London: Butterworths. 1982.
- Lindqvist, O.V. and Lahti, E., On the sexual dimorphism and condition index in the crayfish Astacus astacus L. in Finland. Freshwater Crayfish., 5: 3–11. 1983.
- Maravelias, C.D., Haralabous, J. and Papaconstantinou, C., Predicting demersal fish species distributions in the Mediterranean Sea using artificial neural networks. Mar Ecol., 255:249–258. 2003.
- Mastrorillo, S., Lek, S., Dauba, F. and Belaud, A., The use of artificial neural networks to predict the presence of small-bodied fish in river. Freshwater Biol., 38: 237–246. 1997.
- Mendes, B., Fonseca, P. and Campos, A., Weight length relationships for 46 fish species of the Portuguese west coast. J. Appl. Ichthyol., 20: 355–361. 2004.
- Momot, W. T. Annual production and production/biomass of the crayfish, Orconectes virilis in two northern Ontario Lakes. Trans. Am. Fish. Soc., 96: 202–209. 1978.
- Moutopoulos, D. K., Stergiou, K. I. Length˗weight and length˗length relationships of fish species from Aegean Sea (Greece). J. Appl. Ichthyol. 18: 200˗203. 2002.
- Nystrom, P. Ecology. In: Biology of Freshwater Crayfish (ed. D. M. Holdich), pp. 192–235. Blackwell Science, Oxford. 2002.
- Obach, M., Wagner, R., Werner, H. and Schmidt, H.H., Modelling population dynamics of aquatic insects ith artificial neural networks. Ecol Model., 146:207–217. 2001.
- Olden, J. D., & Jackson, D. A. Fish–habitat relationships in lakes: gaining predictive and explanatory insight by using artificial neural networks. Transactions of the American Fisheries Society, 130(5), 878–897. 2001.
- Olsson, K., Dynamics of omnivorous crayfish in freshwater ecosystems. Ph.D. thesis. Department of Ecology, Limnology, Lund Univ., 119 pp. 2008.
- Ouali, D., Chebana, F., & Ouarda, T. B. Fully nonlinear statistical and machine‐learning approaches for hydrological frequency estimation at ungauged sites. Journal of Advances in Modeling Earth Systems, 9(2), 1292–1306. 2017.
- Park, Y.S., Verdonschot, P.F.M., Chon, T.S. and Lek, S., Patterning and predicting aquatic macro invertabrate diversities using artificial neural network. Water Res., 37: 1749–1758. 2003.
- Pârvulescu L., Schrimpf A., Kozubíková E., Cabanillas Resino S., Vrålstad T., Petrusek A & Schulz R. Invasive crayfish and crayfish plague on the move: first detection of the plague agent Aphanomyces astaci in the Romanian Danube. Diseases of Aquatic Organisms 98: 85–94. 2012.
- Primavera, J.H., Parado-Estepa, F.D. and Lebata, J.L., Morphometric relationship of length and weight of giant tiger prawn Penaeus monodon according to life stage, sex and source. Aquaculture, 164: 67–75. 1998.
- Rahe R, Soylu E. Identification of the pathogenic fungus causing destruction to Turkish crayfish stocks (Astacus leptodactylus). J Invertebr Pathol 54: 10–15. 1989.
- Rhodes, C.P. and Holdich, D.M., On size and sexual dimorphism in Austropotamobius pallipes (Lereboullet) – A step in assessing the commercial exploitation potential of the native British freshwater crayfish. Aquaculture, 17: 345–358. 1979.
- Ricker, W.E., Linear regressions in fishery research. J Fish Res Board Can., 30:409–434. 1973.
- Rocha, J. C., Passalia, F. J., Matos, F. D., Takahashi, M. B., de Souza Ciniciato, D., Maserati, M. P., ... Nogueira, M. F. G. A method based on artificial intelligence to fully automatize the evaluation of bovine blastocyst images. Scientific Reports, 7(1), 7659. 2017.
- Romaire, R.P., Forester J.S. and Avault, J.W., Length˗weight relationships of two commercially important crayfishes of the genus Procambarus. Freshwater Crayfish, 3:463˗470. 1977.
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J., Learning internal representations by error propagation in Parallel Distributed Processing. Explorations in the Microstructure of Cognition MIT Press, 1:318–362. 1986.
- Sari, B. G., Lúcio, A. D. C., Santana, C. S., Krysczun, D. K., Tischler, A. L., & Drebes, L. Sample size for estimation of the Pearson correlation coefficient in cherry tomato tests. Ciência Rural, 47(10):1–6. 2017.
- Saygı B.Y, Demirkalp, F.Y. Trophic status of shallow Yeniçağa Lake (Bolu, Turkey) in relation to physical and chemical environment. Fresenius Environmental Bulletin. 13:385 -393. 2004.
- Sharda, R., Patil, R. B. Connectionist approach to time series prediction: an empirical test. Journal of Intelligent Manufacturing, 3(5), 317–323. 1992.
- Sholahuddin, A., Ramadhan, A. P., & Supriatna, A. K. The Application of ANN-Linear Perceptron in the Development of DSS for a Fishery Industry. Procedia Computer Science, 72, 67–77. 2015.
- Skurdal, J. and Qvenild, T. Growth, maturity and fecundity of Astacus astacus in Lake Steinsfjorden, In: Freshwater Crayfish (Eds., J. Skurdal and T. TougbØl), Norway, pp. 182–186. 1986.
- Skurdal, J. and Taugbol, T., Crayfish of commercial importance-Astacus. In: D.M. Holdich (Ed.), Biology of Freshwater Crayfish. Blackwell Science, Oxford: 467–510. 2001.
- Souty-Grosset, C., Holdrich, D.M., Noel, P.Y., Reynolds, J.D. and Haffner, P., Atlas of crayfish in Europe. Publications Scientifiques du MNHN-Paris. 2006.
- Sun, L., Xiao, H., Li, S. and Yang, D., Forecating fish stock recruitment and planning optimal harvesting strategies by using neural network. Journal of Computers, 4(11):1075–1082. 2009.
- Suryanarayana, I., Braibanti, A., Rao, R.S., Ramamc, V.A., Sudarsan, D. and Rao, G.N., Neural networks in fisheries research. Fish Res., 92:115–139. 2008.
- Tekin, M. Numerical Methods (Computer Analysis). (Updated 6. Edition). Konya: Günay Ofset. (Turkish). 2008.
- Teles, L. O., Vasconcelos, V., Pereira, E., & Saker, M. Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks. Environmental Management, 38(2), 227–237. 2006.
- Tesch, F.W., Age and growth. In: Methods for Assessment of Fish Production in Fresh Waters (ed., W. E. Ricker), Blackwell Scientific Publications, Oxford, 99˗130. 1971.
- Tosunoğlu, Z., Aydın, C., Özaydın, O. and Leblebici, S., Trawl codend mesh selectivity of braided PE material for Parapenaeus longirostris (Lucas, 1846) (Decapoda, Penaeidae). Crustaceana, 80: 1087–1094. 2007.
- Tureli Bilen, C., Kokcu, P. and Ibrikci, T., Application of Artificial Neural Networks (ANNs) for Weight Predictions of Blue Crabs (Callinectes sapidus Rathbun, 1896) Using Predictor Variables. Medit Mar Sci., 12(2):439–446. 2011.
- TÜİK Aquaculture Statistics. Ankara, Turkey: Turkey Statistical Institute Publications (in Turkish). www.tuik.gov.tr. 2018.
- TÜİK, Aquaculture Statistics (1984–1991). Ankara, Turkey: Turkey Statistical Institute Publications (in Turkish). 1984–1991.
- Verdiell-Cubedo, D., Oliva-Paterna, F.J. and Torralva, M., Length-weight relationships for 22 fish species of the Mar Menor coastal lagoon (Western Mediterranean Sea). Journal of Applied Ichthyology, 22: 293–294. 2006.
- Westman, K., Savolainen, R., Growth of the signal crayfish Pacifastacus leniusculus, in a small forest lake in Finland. Boreal Environ. Res. 7, 53–61. 2002.
- Witt, S.F. and Witt C.A. Modeling and Forecasting Demand in Tourism. Londra: Academic Press. 1992.
- Yüksel, F., and Duman, E. The investigation of the crayfish (Astacus leptodactylus Eschscholtz, 1823) population amplitude in Keban Dam Lake. Journal of FisheriesSciences. com, 5(3), 226. 2011.
- Would the Benefits Created by Industry 4.0 Via Innovations Set the Consumers Free of Planned Obsolescence? by Sinem Zeliha Dalak, Cagla Seneler
- Accenture.com. (2018). Airbus | Wearable Technology | Accenture. [online] Available at: https://www.accenture.com/gb-en/success-airbus-wearable-technology
- Adamson, G. and Stevens, B. (2003). Industrial strength design. Milwaukee, Wis.: Milwaukee Art Museum.
- AM Sub-Platform. (2014). Additive Manufacturing: Strategic Research Agenda. [online] Available at: http://www.rm-platform.com/linkdoc/AM%20SRA%20-%20February%202014.pdf
- Amankwah-Amoah, J. (2017). Integrated vs. add-on: A multidimensional conceptualisation of technology obsolescence. Technological Forecasting and Social Change, 116, pp.299 – 307.
- Auschitzky, E., Hammer, M. and Rajagopaul, A. (2018). How big data can improve manufacturing. [online] McKinsey & Company. Available at: https://www.mckinsey.com/business-functions/operations/our-insights/how-big-data-can-improve-manufacturing
- Bertolucci, J. (2018). Intel Cuts Manufacturing Costs With Big Data – InformationWeek. [online] InformationWeek. Available at: https://www.informationweek.com/software/information-management/intel-cuts-manufacturing-costs-with-big-data/d/d-id/1109111 [Accessed 25 Nov. 2018].
- Bidgoli, H. (2010). Supply chain management, marketing and advertising, and global management. Hoboken, NJ: Wiley.
- Bokhari, M., Shallal, Q. and Tamandani, Y. (2016). Cloud computing service models: A comparative study. IEEE.
- Bulow, J. (1986). An Economic Theory of Planned Obsolescence. The Quarterly Journal of Economics, 101(4), p.729.
- Burgess, J. (2018). 4 Big Data Use Cases in the Manufacturing Industry. [online] Ingrammicroadvisor.com. Available at: http://www.ingrammicroadvisor.com/data-center/4-big-data-use-cases-in-the-manufacturing-industry
- Butt, T., Camilleri, M., Paul, P. and Jones, K. (2015). Obsolescence types and the built environment – definitions and implications. International Journal of Environment and Sustainable Development, 14(1), p.20.
- Castells, M. (2014). The Impact of the Internet on Society: A Global Perspective. [online] MIT Technology Review. Available at: https://www.technologyreview.com/s/530566/the-impact-of-the-internet-on-society-a-global-perspective/
- Credit Suisse. (2015). Global Wealth Report. [online] Available at: http://publications.credit-suisse.com/tasks/render/file/index.cfm?fileid=F2425415-DCA7-80B8-EAD989AF9341D47E
- Deloitte. (2017). Using autonomous robots to drive supply chain innovation. [online] Available at: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/manufacturing/us-supply-chain-of-the-autonomous-robots.pdf
- Erol, S., Jäger, A., Hold, P., Ott, K. and Sihn, W. (2016). Tangible Industry 4.0: A Scenario-Based Approach to Learning for the Future of Production. Procedia CIRP, 54, pp.13 – 18.
- Fishman, A., Gandal, N. and Shy, O. (1993). Planned Obsolescence as an Engine of Technological Progress. The Journal of Industrial Economics, 41(4), p.361.
- Frey, C. and Osborne, M. (2013). THE FUTURE OF EMPLOYMENT: HOW SUSCEPTIBLE ARE JOBS TO COMPUTERISATION?. [online] Available at: https://www.oxfordmartin.ox.ac.uk/downloads/academic/The_Future_of_Employment.pdf
- Gartner.com. (2018). Gartner Says 6.4 Billion Connected. [online] Available at: https://www.gartner.com/newsroom/id/3165317
- Ge.com. (2018). Everything you need to know about IIoT | GE Digital. [online] Available at: https://www.ge.com/digital/blog/everything-you-need-know-about-industrial-internet-things
- Ge.com. (2018). What is Edge Computing? | GE Digital. [online] Available at: https://www.ge.com/digital/blog/what-edge-computing#to-section-index=section-8 GE Additive. (2018). What is Additive Manufacturing?. [online] Available at: https://www.ge.com/additive/additive-manufacturing
- Guiltinan, J. (2008). Creative Destruction and Destructive Creations: Environmental Ethics and Planned Obsolescence. Journal of Business Ethics, 89(S1), pp.19 – 28.
- Grattan, L. (2016). Populism's power. Oxford: Oxford University Press.
- Grieves, M. (2014). [online] Innovate.fit.edu. Available at: http://innovate.fit.edu/plm/documents/doc_mgr/912/1411.0_Digital_Twin_White_Paper_Dr_Grieves.pdf
- Hawking, S., Russell, S., Tegmark, M. and Wilczek, F. (2014). Stephen Hawking: 'Transcendence looks at the implications of artificial intelligence – but are we taking AI seriously enough?'. [online] The Independent. Available at: https://www.independent.co.uk/news/science/stephen-hawking-transcendence-looks-at-the-implications-of-artificial-intelligence-but-are-we-taking-9313474.html
- Hawking, S., Russell, S., Tegmark, M. and Wilczek, F. (2014). Stephen Hawking: 'Transcendence looks at the implications of artificial intelligence – but are we taking AI seriously enough?'. [online] The Independent. Available at: https://www.independent.co.uk/news/science/stephen-hawking-transcendence-looks-at-the-implications-of-artificial-intelligence-but-are-we-taking-9313474.html [Accessed 30 Dec. 2018].
- Hozdić, E. (2015). MANUFACTURING FOR INDUSTRY 4.0.
- Hozdić, Elvis. (2015). Smart factory for industry 4.0: A review. International Journal of Modern Manufacturing Technologies. 7. 28–35.
- Huelsman, T., Powers, E., Peasley, S. and Robinson, R. (2016). Cyber risk in advanced manufacturing. [online] Available at: https://www.nist.gov/sites/default/files/documents/2016/12/28/cyberrisk_manu_fullstudy_landscape_brochure_lpxcic07_06_17_7101_finalfor.pdf
- Kadir, B. (2017). The nine pillars of Industry 4.0. [online] 4th Post | Industry 4.0 | Smart Manufacturing | Research. Available at: https://www.4thpost.com/single-post/2017/07/23/The-nine-pillars-of-Industry-40
- Kenton, W. (2018). End-To-End. [online] Investopedia. Available at: https://www.investopedia.com/terms/e/end-to-end.asp
- Kenton, W. (2018). Functional Obsolescence. [online] Investopedia. Available at: https://www.investopedia.com/terms/f/functional-obsolescence.asp
- Kenton, W. (2018). Vertical Integration. [online] Investopedia. Available at: https://www.investopedia.com/terms/v/verticalintegration.asp
- Kenton, W. (2018). What are some examples of horizontal integration?. [online] Investopedia. Available at: https://www.investopedia.com/ask/answers/051315/what-are-some-examples-horizontal-integration.asp
- Kessler, T. and Brendel, J. (2016). Planned Obsolescence and Product-Service Systems: Linking Two Contradictory Business Models.
- Keynes, J. (1931). Economic Possibilities for our Grandchildren.
- Khaleeli, H. (2015). End of the line for stuff that's built to die?. [online] the Guardian. Available at: https://www.theguardian.com/technology/shortcuts/2015/mar/03/has-planned-obsolesence-had-its-day-design
- Knight, E. (2014). The Art of Corporate Endurance. [online] Harvard Business Review. Available at: https://hbr.org/2014/04/the-art-of-corporate-endurance
- Kim, E. (2018). Amazon's $775 million deal for robotics company Kiva is starting to look really smart. [online] Business Insider. Available at: https://www.businessinsider.com/kiva-robots-save-money-for-amazon-2016-6
- Kumari, P. and Kaur, P. (2018). A survey of fault tolerance in cloud computing. Journal of King Saud University – Computer and Information Sciences.
- Kuppelwieser, V., Klaus, P., Manthiou, A. and Boujena, O. (2018). Consumer responses to planned obsolescence. Journal of Retailing and Consumer Services, 47, pp.157 – 165.
- London, B. (1932). Ending the Depression Through Planned Obsolescence.
- Lueth, K. (2015). IoT basics: Getting started with the Internet of Things. [online] Available at: https://iot-analytics.com/wp/wp-content/uploads/2015/03/2015-March-Whitepaper-IoT-basics-Getting-started-with-the-Internet-of-Things.pdf
- Mearian, L. (2017). MIT creates 3D printed graphene that’s lighter than air, 10X stronger than steel. [online] Computerworld. Available at: https://www.computerworld.com/article/3155102/emerging-technology/mit-creates-3d-printed-graphene-thats-lighter-than-air-10x-stronger-than-steel.html
- Naím, M. (2013). The End of Power: From Boardrooms to Battlefields and Churches to States, Why Being In Charge Isn't What It Used to Be.
- Neagle, C. (2013). 10 augmented reality technologies you should know about. [online] Network World. Available at: https://www.networkworld.com/article/2358001/data-center/90615-10-augmented-reality-technologies-you-should-know-about.html#slide2 [Accessed 21 Dec. 2018].
- OECD. (2011). Divided We Stand: Why Inequality Keeps Rising. [online] Available at: http://www.oecd.org/els/soc/49499779.pdf
- Ohnemus, T. (2018). Digital Twin Excellence: Two Shining Examples. [online] Digitalistmag.com. Available at: https://www.digitalistmag.com/iot/2018/06/14/digital-twin-excellence-2-shining-examples-06175901
- Orbach, B. (2004). The Durapolist Puzzle: Monopoly Power in Durable-Goods Market. Yale Journal on Regulation, 21, pp.67 – 118.
- Parrott, A. and Warshaw, L. (2017). Industry 4.0 and the digital twin Manufacturing meets its match. [online] Deloitte Insights. Available at: https://www2.deloitte.com/insights/us/en/focus/industry-4-0/digital-twin-technology-smart-factory.html
- Qin, J., Liu, Y. and Grosvenor, R. (2016). A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP, 52, pp.173 – 178.
- Packard, V. (1960). The Waste Makers. Great Britain, London: Longmans.
- Patidar, S., Rane, D. and Jain, P. (2012). A Survey Paper on Cloud Computing. 2012 Second International Conference on Advanced Computing & Communication Technologies.
- Ramsey, M. and MacMillan, D. (2015). Carnegie Mellon Reels After Uber Lures Away Researchers. [online] WSJ. Available at: https://www.wsj.com/articles/is-uber-a-friend-or-foe-of-carnegie-mellon-in-robotics-1433084582
- Rangnekar, D. (2002). R&D appropriability and planned obsolescence: empirical evidence from wheat breeding in the UK (1960–1995). Industrial and Corporate Change, 11(5), pp.1011 – 1029.
- Rimal, B., Choi, E. and Lumb, I. (2009). A Taxonomy and Survey of Cloud Computing Systems. 2009 Fifth International Joint Conference on INC, IMS and IDC.
- Rivera, J. and Lallmahomed, A. (2016). Environmental implications of planned obsolescence and product lifetime: a literature review. International Journal of Sustainable Engineering, 9(2), pp.119 – 129.
- Rodič, B. (2017). Industry 4.0 and the New Simulation Modelling Paradigm. Organizacija, 50(3), pp.193 – 207.
- Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P. and Harnisch, M. (2018). Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries. [online] Inovasyon.org. Available at: http://www.inovasyon.org/pdf/bcg.perspectives_Industry.4.0_2015.pdf
- Saikia, D. and Devi, Y. (n.d.). FAULT TOLEREANE TECHNIQUES AND ALGORITHMS IN CLOUD COMPUTING. [online] Ijcscn.com. Available at: https://www.ijcscn.com/Documents/Volumes/vol4issue1/ijcscn2014040101.pdf
- Savu, L. (2011). Cloud Computing: Deployment Models, Delivery Models, Risks and Research Challenges. 2011 International Conference on Computer and Management (CAMAN).
- Schuh, G., Potente, T., Wesch-Potente, C., Weber, A. and Prote, J. (2014). Collaboration Mechanisms to Increase Productivity in the Context of Industrie 4.0. Procedia CIRP, 19, pp.51 – 56.
- Schwab, K. (2016). The Fourth Industrial Revolution. World Economic Forum.
- Scott, M. (2017). 3D Printing Will Change The Way We Make Things And Design Them In 2017. [online] Forbes.com. Available at: https://www.forbes.com/sites/mikescott/2017/01/25/3d-printing-will-change-the-way-we-make-things-in-2017/#107a1385310e
- Singh, S., Jeong, Y. and Park, J. (2016). A survey on cloud computing security: Issues, threats, and solutions. Journal of Network and Computer Applications, 75, pp.200 – 222.
- Sivarajah, U., Kamal, M., Irani, Z. and Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, pp.263 – 286.
- Stewart, I. (1959). Day Conference in Gloucestershire. Occupational Therapy: the Official Journal of the Association of Occupational Therapists, 22(11), pp.14 – 15.
- Stock, T. and Seliger, G. (2016). Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia CIRP, 40, pp.536 – 541.
- Strausz, R. (2009). Planned Obsolescence as an Incentive Device for Unobservable Quality. The Economic Journal, 119(540), pp.1405 – 1421.
- Swan, P. (1972). Optimum Durability, Second-Hand Markets, and Planned Obsolescence. Journal of Political Economy, 80(3, Part 1), pp.575 – 585.
- Thoben, K., Wiesner, S. and Wuest, T. (2017). “Industrie 4.0” and Smart Manufacturing – A Review of Research Issues and Application Examples. International Journal of Automation Technology, 11(1), pp.4 – 16.
- Tofail, S., Koumoulos, E., Bandyopadhyay, A., Bose, S., O’Donoghue, L. and Charitidis, C. (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), pp.22 – 37.
- Utaka, A. (2000). Planned obsolescence and marketing strategy. Managerial and Decision Economics, 21(8), pp.339 – 344.
- Vaidya, S., Ambad, P. and Bhosle, S. (2018). Industry 4.0 – A Glimpse. Procedia Manufacturing, 20, pp.233 – 238.
- Waldman, M. (1996). Planned Obsolescence and the R&D Decision. The RAND Journal of Economics, 27(3), p.583.
- Waslo, R., Lewis, T., Hajj, R. and Carton, R. (2017). [online] Www2.deloitte.com. Available at: https://www2.deloitte.com/content/dam/insights/us/articles/3749_Industry4-0_cybersecurity/DUP_Industry4-0_cybersecurity.pdf
- Wetterstrand, K. (2015). The Cost of Sequencing a Human Genome. [online] National Human Genome Research Institute (NHGRI). Available at: https://www.genome.gov/sequencingcosts/
- White, L. (1969). The American Automobile Industry in the Post War Period.
- World Economic Forum. (2015). Data-Driven Development Pathways for Progress. [online] Available at: http://www3.weforum.org/docs/WEFUSA_DataDrivenDevelopment_Report2015.pdf
- Zissis, D. and Lekkas, D. (2012). Addressing cloud computing security issues. Future Generation Computer Systems, 28(3), pp.583–592.
- Industry 4.0 and Big Data Literature Review by Burcu OZCAN, Cevher HİLAL AYTAC
- Abouelmehdi, K., Beni-hssane, A., Khaloufi H., et. al. (2017). Big Data Security and Privacy in Healthcare: A Review. Procedia Comput Science, 113,73–80.
- Ackermann, K. and Angus, S.D. (2014). A Resource Efficient Big Data Analysis Method for the Social Sciences: The Case of Global IP Activity. Procedia Comput Science, 29, 2360–2369.
- Aikat, J., Carsey T.M., Fecho K., et al. (2017). Scientific Training in the Era of Big Data: A New Pedagogy for Graduate Education. Big Data, 5 (1), 12–18.
- Akhavan-Hejazi, H., Mohsenian-Rad, H. (2018). Power Systems Big Data Analytics: An Assessment of Paradigm Shift Barriers and Prospects. Energy Reports, 4, 91–100.
- Arslantekin, S. and Doğan, K. (2016). Big Data: Its Importance, Structure and Current Status. DTCF Journal, 56, 15–36.
- Baccarelli, E., Cordeschi, N., Mei A., et. al. (2016). Energy-efficient Dynamic Traffic Offloading and Reconfiguration of Networked Data Centers for Big Data Stream Mobile Computing: Review, Challenges and A Case Study. IEEE Network, 30 (2), 54–61.
- Bartevyan, L. Industry 4.0 – Summary Report. (2015). DLG: Expert Report. (Report No:5), 1–8.
- Bello-Orgaz, G., Jung, J.J., Camacho, D. (2016). Social Big Data: Recent Achievements and New Challenges. Information Fusion, 28, 45–59.
- Benjelloun, F.Z., Lahcen, A.A., Belfkih, S. (2015, March). An Overview of Big Data Opportunities, Applications and Tools. 2015 Intelligent Systems and Computer Vision (ISCV), 1–6.
- Blazquez, D. and Domenech, J. (2018). Big Data Sources and Methods for Social and Economic Analyses. Technological Forecasting & Social Change, 130, 99–113.
- Brettel, M., Friederichsen, N., Keller, M. et. al. (2014). How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective. International Journal of Information and Computer Engineering, 8 (1), 37–44.
- Cackett, D. Information Management and Big Data, A Reference Architecture. White paper. Redwood Shores: Oracle Corporation. 2013; Accessed: 20 April 2016. https://www.oracle.com/technetwork/topics/entarch/articles/info-mgmt-big-data-ref-arch-1902853.pdf
- Can, A.V. and Kıymaz, M. (2016). Reflection of Information Technologies to Retail Sector: Impact of Industry 4.0 to Accounting Departments. Journal of Suleyman Demirel University Institute of Social Sciences, Special Issue, 107–117.
- Celesti, A., Celesti, F., Fazio, M., et. al. (2017). Are Next-Generation Sequencing Tools Ready for the Cloud? Trsoends in Biotechnology, 35 (6), 486–489.
- Chang, V. (2018). A Proposed Social Network Analysis Platform for Big Data Analytics. Technological Forecasting and Social Change, 130, 57–68.
- Chen, R. and Lazer, M. (2013). Sentiment Analysis of Twitter Feeds for the Prediction of Stock Market Movement. Accessed: 25.01.2013. http://cs229.stanford.edu/proj2011/ChenLazer-SentimentAnalysisOfTwitterFeedsForThePredictionOfStockMarketMovement.pdf.
- Chen, P. (2018). Medical Big Data Applications: Intertwined Effects and Effective Resource Allocatiın Strategies Identified Through IRA-NRM Analysis. Technologies Forecasting and Social Change, 150–164.
- Chen, D.Q., Preston, D.S., Swink, M. (2015). How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. Journal of Management Information Systems, 32 (4), 4–39.
- Chung, M.K. (2018). Statistical Challenge of Big Brain Network Data. Statistics & Probability Letters, 136, 78–82.
- Corte-Real, N., Ruivo, P., Oliveira, T. (2014). The Diffusion Stages of Business Intelligence & Analytics (BI&A): A Systematic Mapping Study. Procedia Technology, 16, 172–179.
- Davenport, T.H. (2014). Big Data at Work: Dispelling the Myths, Uncovering the Opportunities. Boston Massachusetts: Harvard Business Press.
- Dong, X., Li, R., He, H., et al. (2015). Secure Sensitive Data Sharing on a Big Data Platform. Tsinghua Science and Technology, 20 (1), 72–80.
- Du, D., Li, A., Zhang, L. (2014). Survey on the Applications of Big Data in Chinese Real Estate Enterprise. Procedia Computer Science, 30, 24–33.
- EBSO,Aegean Region Chamber of Industry (2015). Industry 4.0. Research Directorate.
- Elragal, A. (2014). ERP and Big Data: The Inept Couple. Procedia Technology,16, 242–249.
- Erevelles, S., Fukawa, N., Swayne, L. (2016). Big Data Consumer Analytics and the Transformation of Marketing. Journal of Business Research, 69 (2), 897–904.
- Fessele, K.L. (2018). The Rise of Big Data in Oncology. Seminars in Oncology Nursing, 34 (2), 168–176.
- Gandomi, A. and Haider, M. (2015). Beyond the Hype: Big Data Concepts, Methods, and Analytics. International Journal of Information Management,35 (2), 137–144.
- Germano, G. (2015). How Pfizer is Using Big Data to Power Patient Care. Forbes. Accessed:03.09.2015. http://www.forbes.com/sites/matthewherper/2015/02/17/how-pfizer-is-using-big-data-to-power-patient-care/#3a8f6ee8ceb4
- Gleaser, E.L., Kominers, S.D., Luca, M., et al. (2016). Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life. Economic Inquiry, 56 (1),114–137.
- Golzer, P., Simon, L., Cato, P., et al. (2015). Designing Global Manufacturing Networks Using Big Data. Procedia CIRP, 33,191–196.
- Gu, F., Ma, B., Guo, J. et al. (2017). Internet of Things and Big Data as Potential Solutions to thSe Problems in Waste Electrical and Electronic Equipment Management: An exploratory Study. Waste Management, 68, 434–448.
- Gursakal, N. (2014). Big Data. Bursa: Dora Publishing.
- Hardy, K. and Maurushat, A. (2017). Opening Up Government Data for Big Data Analysis and Public Benefit. Computer Law & Security Review, 33 (1), 30–37.
- Hashem, I.A.T., Yaqoob, I., Anuar, N.B., et al. (2015). The Rise of “Big Data” on Cloud Computing: Review and Open Research Issues. Information Systems, 47, 98–115.
- He, X., Ai, Q., Qiu, R., et al. (2017). A Big Data Architecture Design for Smart Grids Based on Random Matrix Theory. IEEE Transactions on Smart Grid, 8 (2), 674–686.
- Hu, F., Yang, C., Schnase, J.L., et al. (2018). ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics. Computers & Geosciences, 2018, 115, 154–166.
- Huda, M., Jasmi, K. A., Embong, W.H., et al. (2018). Nurturing Compassion-Based Empathy: Innovative Approach in Higher Education. In M. Badea, & M. Suditu (Eds.), Violence Prevention and Safety Promotion in Higher Education Settings. Hershey, 154–173.
- Hure, E., Picot-Coupey, K., Ackermann, C. (2017). Understanding Omni-channel Shopping Value: A Mixed-method Study. Journal of Retailing and Consumer Services, 3, 314–330.
- Hurwitz, J., Nugent, A., Halper, F., et al. (2013). Big Data for Dummies. Hoboken, NJ: For Dummies, sa Wiley Brand
- Iafrate, F. (2015). From Big Data to Smart Data. Hoboken, NJ: ISTE Ltd, John Wiley and Sons Inc.,
- International Controller Association-ICV (2017). Industrie 4.0- Controlling in the Age of Intelligent Networks. Dream Car of the Dream Factory of the ICV- 2015. https://www.icv-controlling.com/fileadmin/Assets/Content/AK/Ideenwerkstatt/Files/Dream_Car_Industrie_4.0_EN.pdf
- Ji, W., Wang, L. (2017). Big Data Analytics Based Fault Prediction for Shop Floor Scheduling. Journal of Manufacturing Systems, 43 (1), 187–194.
- Jian, Q., Ying, L., Grosvenor, R. (2016). A Categorical Framework of Manufacturing for Industry 4.0 and Beyond. Procedia CIRP, 52, 173–178.
- Jin, X., Wah, B.W., Cheng, X., et al. (2015). Significance and Challenges of Big Data Research. Big Data Research, 2 (2), 59–64.
- Karim, A., Siddiga, A., Safdar, Z., et al. (2017). Big Data Management in Participatory Sensing: Issues, Trends and future Directions. Future Generation Computer Systems. Available online. https://doi.org/10.1016/j.future.2017.10.007
- Khakifrooz, M., Chien, C.F., Chen, Y. (2017). Bayesian Inference For Mining Semiconductor Manufacturing Big Data for Yield Enhancement and Smart Production to Empower Industry 4.0. Applied Soft Computing, 68, 990–999.
- Kobusinska, A., Pawluczuk, K., Brzezinski, J. (2018). Big Data Fingerprinting Information Analytics for Sustainability. Future Generation Computer Systems, 86, 1321–1337.
- Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity, and Variety (). META Group.
- Lee, R.J., Sener, I.N., Mokhtarian, P.L., et al. (2017). Relationships Between the Online and In-store Shopping Frequency of Davis, California Residents. Transportation Research Part A: Policy and Practice, 100, 40–52.
- Li, J., Xu, L., Tang, L., et al. (2018) Big Data in Tourism Research: A Literature Review. Tourism Management, 68, 301–323.
- Mahyoub, F.H., Siddiqui, M.A., Dahab, M.Y. (2014). Building an Arabic Sentiment Lexicon Using Semi-Supervised Learning. Journal of King Saud University-Computer and Information Sciences, 26 (4), 417–424.
- Manogaran, G., Thota, C., Lopez, D., et al. (2017). Big Data Knowledge System in Healthcare. Internet of Things and Big Data Technologies for Newt Generation Healthcare, 23, 133–157.
- Manyika, J., Chui, M., Brown, B., et al. (2011). Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute. https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation
- Matz, S., Netzer, O. (2017). Using Big Data As a Window into Consumers’ Psychology. Current Opinion in Behavioral Sciences, 18, 7–12.
- Mayer-Schönberger, V., Cukier, K. (2013). Big Data – A Revolution to Transform Your Life, Work and Thinking. İstanbul: Paloma Publisher.
- Mehta, N. and Pandit, A. (2018). Concurrence of Big Data Analytics and Healthcare: A systematic Review. International Journal of Medical Informatics, 114, 57–65.
- Melie-Garcia, L., Draganski, B., Ashburner, J., et al. (2018). Multiple Linear Regression: Bayesian Inference for Distributed and Big Data in the Medical Informatics Platform of the Human Brain Project. The Preprint Server For Biology. Electronic preprint. https://doi.org/10.1101/242883
- Mendelson, D. (2017). Legal Protections for Personal Health Information in the Age of Big Data – A Proposal for Regulatory Framework. Ethics, Medicine and Public Health, 3, 37–55.
- Moktadir, M.A., Ali, S.M., Paul, S.K., et al. (2018). Barries to Big Data Analtyics in Manufacturing Supply Chains: A Case Study from Bangladesh. Computers & Industrial Engineering. Available online. https://doi.org/10.1016/j.cie.2018.04.013
- Morabito, V. (2015). Big Data and Analytics. Berlin: Springer International Publishing.
- Niemi, T., Nurminen, J.K., Liukkonen, J., et al. (2018). Towards Green Big Data an CERN. Future Generation Computer Systems, 81, 103–113.
- Pries, K.H., Dunnigan, R. (2015). Big Data Analytics: A Practical Guide for Managers. New York: CRC Press.Taylor & Francis Group.
- Qian, J., Li, P., Yue, X., et al. (2015). Hierarchical Attribute Reduction Algorithms for Big Data Using MapReduce. Knowledge-Based Systems, 73, 18–31.
- Ramakrishnan, R., Sridharan, B., Kasturi, P., et al. (2017 May). Azure Data Lake Store: A Hyperscale Distributed File Service for Big Data Analytics. Proceedings of the 2017 ACM International Conference on Management of Data. doi:10.1145/3035918.3056100
- Salleh, K.A. and Janczewski, L. (2016). Technological, Organizational and Environmental Security and Privacy Issues of Big Data: A Literature Review. Procedia Computer Science, 100, 19–28.
- Samuel, A., Sarfraz, M.I., Haseeb, H., et al. (2015). A Framework for Composition and Enforcement of Privacy-Aware and Context-Driven Authorization Mechanism for Multimedia Big Data. IEEE Transactions and Multimedia,17 (9), 1484–1494.
- Sayer, S., Ulker, A. (2014). Product Lifecycle Management. Engineer & the Machinery Magazine,55 (657), 65–72.
- Schwab, K. (2016). The Fourth Industrial Revolution. İstanbul: Optimist Publications.
- Shi, Y. (2014). Big Data: History, Current Status, and Challenges Going Forward. The Bridge, A Global View of Big Data, 44 (6), 6–11.
- Shin, D.H. and Choi, M.J. (2015). Ecological Views of Big Data: Perspectives and Issues. Telematics and Informatics,32 (2), 311–320.
- Siegel, E. (2013). Predictive Analytics: The Power to Predict Who Will Click, buy, Lie, or Die. Hoboken, N.J: Wiley.
- Siemens, (2015) On the Way to Industrie 4.0 – The Digital Enterprise Industry 4.0 Way. https://www.siemens.com/press/pool/de/events/2015/digitalfactory/2015-04-hannovermesse/presentation-e.pdf
- Sinan, A. (2016). A New Theme for Production: Industry 4.0. Journal of Life Economics, 3 (2), 19–30.
- Smith, S.M. and Nichols, T.E. (2018). Statistical Challenges in Big Data Human Neuroimaging, Neuroview, 97 (2), 263–268.
- Smiths, G., Pivert, O., Yager, R., et al. (2018). A Soft Computing Approach to Big Data Summarization. Fuzzy Sets and Systems, 348, 4–20.
- Soroka, A., Liu, Y., Hani, L., et al. (2017). Big Data Driven Customer Insights for SMEs in Redistributed Manufacturing, Procedia CIRP, 63, 692–697.
- Su, Z., Xu, Q., Qi, Q. (2016). Big Data in Mobile Social Networks: A QoE- Oriented Framework. Browse Journal & Magazines, 30 (1), 52–57.
- Tiwari, S., Wee, H.M. (2018). Daryanto Y. Big Data Analytics in Supply Chain Management Between 2010 and 2016: Insights to Industries. Computers & Industrial Engineering, 115, 319–330.
- Torrecilla, J.L. and Romo, J. (2018). Data Learning From Big Data. Statitics & Probability Letters, 136, 15–19.
- Wamba, S.F., Gunasekaran, A., Akter, S., et al. (2017). Big Data Analytics and Firm Performance: Effects of Dynamic Capabilities. Journal of Business Research, 70, 356–365.
- Weichselbraun, A., Gindl, S., Scharl, A. (2014). Enriching semantic knowledge bases for opinion mining in big data applications. Knowledge Based Systems 69, 78–85.
- Williams, M.L., Burnap, P., Sloan, L. (2017). Crime Sensing With Big Data: The Affordances and Limitations of Using Open-source Communications to Estimate Crime Patterns. The British Journal of Criminology,57 (2),320–340.
- Witkowski, K. (2016). Internet of Things, Big Data, Industry 4.0 – Innovative Solutions in Logistics and Supplu Chains Management. Procedia Engineer, 182, 763–769.
- Wu, K., Cui, L., Tseng, M., et al. (2017). Applying Big Data with Fuzzy Dematel to Discover the Critical Factors for Employee Engagement in Developing Sustainability for the Hospitality Industry under Uncertainty. In Supply Chain Management in the Big Data Era (pp. 218–253). IGI Global. doi:10.4018/978–1–5225–0956–1.ch012
- Wu, K., Liao, C., Tseng, M., et al. (2017). Toward Sustainability: Using Big Data to Explore the Decisive Attributes of Supply Chain Risks and: Uncertainties. Journal of Cleaner Production, 142 (2), 663–676.
- Xiang, Z., Schwartz, Z., Gerdes, J.H., et al. (2015). What Can Big Data and Text Analytics Tell Us About Hotel Guest Experience and Satisfaction? International Journal of Hospitality Management, 44, 120–130.
- Xie, L., Draizen, E.J., Bourne, P.E. (2016). Harnessing Big Data for Systems Pharmacology. Annual Review of Pharmacology and Toxicology, 57, 245–262.
- Yin, S. and Kaynak, O. (2015). Big Data for Modern Industry: Challenges and Trends [Point of View]. Proceedings of the IEEE, 103 (2), 143–146.
- Young, S.D. (2015). A “Big Data” Approach to HIV Epidemiology and Prevention. Preventive Medicin, 70, 17–18.
- Zaki, M., Theodoulidis, B., Shapira, P., et al. (2017). The Role of Big Data to Facilitate Redistributed Manufacturing Using a Co-creation Lens: Patterns from Consumer Goods. Procedia CIRP, 63, 680–685.
- Zeide, E. (2017). The Structural Consequences of Big Data-Driven Education. Big Data, 5 (2), 165–172.
- Zhong, R.Y, Xu, C., Chen, C., et al. (2017). Big Data Analytics for Physical Internet-based Intelligent Manufacturing Shop Floors. Internet Journal of Production Research, 55 (9), 2610–2621.