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Abstract: One of the main topics of scientific research, classification is the operation consisting of distributing objects in classes or groups 
which are, in general, less numerous than them. From Antiquity to the Classical Age, it has a long history where philosophers (Aristotle), 
and natural scientists (Linnaeus), took a great part. But from the nineteenth century (with the growth of chemistry and information science) 
and the twentieth century (with the arrival of mathematical models and computer science), mathematics (especially theory of orders and 
theory of graphs or hypergraphs) allows us to compute all the possible partitions, chains of partitions, covers, hypergraphs or systems of 
classes we can construct on a domain. In spite of these advances, most of classifications are still based on the evaluation of ressemblances 
between objects that constitute the empirical data. However, all these classifications remain, for technical and epistemological reasons we 
detail below, very unstable ones. We lack a real algebra of classifications, which could explain their properties and the relations existing 
between them. Though the aim of a general theory of classifications is surely a wishful thought, some recent conjecture gives the hope that 
the existence of a metaclassification (or classification of all classification schemes) is possible. 
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1.0 Introduction 
 
Classification is the operation consisting of sharing, dis-
tributing or allocating objects in classes or groups which 
are, in general, less numerous than them. It is also the re-
sult of this operation and one of the main topics of scien-
tific research and organization of knowledge (Dahlberg 
2014; Hjørland 2017).  

Inside science, and especially inside mathematics, what 
we call a “classification” supposes the existence of an 
equivalence relation ℛ defined between the elements of a 
set E, leading to the quotient set E/ℛ, the set of equiva-
lent classes that can be, afterall, hierarchised. The various 

elements of the set E are usually compared by the means 
of some invariant. For example, partitioning N, the set of 
natural numbers, into odd and even numbers, supposes 
you take for invariant their classes modulo two. Now, if 
you want to classify the abstract sets in general, then you 
will have to take for invariant their cardinals. In experi-
mental sciences (physics, chemistry, natural sciences, etc.), 
there are more complex invariants, such as symmetry 
groups, discrete groups, and so on. Invariants are, in fact, 
kinds of criteria that allow us to tell whether the objects we 
compare are similar or not. However, in practical domains, 
we cannot get always good invariants or indisputable crite-
ria for classifications. Indeed, even in those domains, a 
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simple glance at the problem shows that classification 
gains by being developed mathematically. Of course, we 
can compare pairs of objects through their attributes, and 
try to make classifications empirically as did, for example, 
Michel Adanson. However, as soon as the number of ob-
jects to be classified exceeds a few dozen, processing the 
operation of classification is very difficult. 

Fortunately, since the 1950s, we can use computers. 
This means that we must define in advance the notions of 
“likeness” or “proximity” of two objects, concepts more 
clearly expressed by a mathematical coefficient of similar-
ity, which is a kind of abstract notion of “distance.” This 
latter, in turn, presupposes the notion of “metric space.” 
And once we have built “sets” or “classes” with some 
structures defined on them (quasiorder, order, topological 
space, etc.) in order to make some groupings of the ob-
jects, we find ourselves again in pure mathematics. Mathe-
matics are also useful to compare these structures by the 
means of powerful tools such as categories and functors. 
So we get classifications of mathematical structures or, if 
we make use of logic, especially model theory, classifica-
tions of their underlying theories. Finally, we reach funda-
tional problems. Building stable classifications raises a lot 
of questions that are familiar to a mathematician: the 
search for invariants, the quest for a metastructure that ex-
plains all forms of empirical or formal classifications, fi-
nally, the examination of a possible algebra able to reflect 
the changes of classification schemes and the passage from 
one classification to another over time. All these facts lead 
to consider a mathematical theory of classification as a new 
construction of the continuum (see section 9.3 below). 
However, we must recognize that, currently, there is no 
single theory of classification. 
 
2.0 A brief history of mathematical classification 
 
For a long time (say, from Plato and Aristotle to the sev-
enteenth and eighteenth centuries), building classifications 
remained the work of natural scientists (in zoology, 
botany, etc.) and, as the number of living beings was not 
so important, did not require any mathematics at all to be 
performed. However, many problems raised in the taxo-
nomic operations (see Dagognet 1970) and the necessity 
of a comprehensive theory was already obvious. Indeed, 
the idea of a general theory of classification, anticipated by 
Kant’s logic ([1800] 1963) when it describes the possible 
divisions of attributes, only began to appear in France with 
Augustin-Pyrame de Candolle (théorie élémentaire de la 
Botanique 1813), who intended to classify the classifica-
tions themselves (Drouin 1994; 2001), opposing artificial 
classifications and natural ones. Then Auguste Comte in 
his Cours de philosophie positive (lessons 36, 40 and 42) posed 
a general theory based on the study of symmetries in na- 

ture. He was himself influenced by the work of Gaspard 
Monge in projective geometry (especially his classification 
of surfaces). However, for a long time, modernity (with the 
exception for library science in the USA, Europe and In-
dia) forgot this problem, which appeared again only in the 
1960s. At this time, the Belgian logician Leo Apostel 
(1963) and the Polish mathematicians Luszczewska-
Romahnowa and Batog (1965a; 1965b) published im-
portant papers on the subject. This revival was followed 
by the new publication of the famous Birkhoff book on 
lattice theory (1967), which had a certain resonance. In the 
1970s, mathematical models of numerical taxonomy 
(Sokal and Sneath 1973) and hierarchical classifications 
were developed in the USA and in France with the books 
of Barbut and Monjardet (1970), Lerman (1970), and 
Benzécri (1973). All these works assumed of course the big 
last century advances in mathematical order theory: espe-
cially the articles of Birkhoff (1935; 1949), Dubreil and 
Jacotin (1939), Ore (1942; 1943), Krasner (1944) and 
Riordan (1958). We must also mention the ancient work 
of Kurepa (1935) on infinite ramified spaces and the nu-
merous papers of Saharon Shelah (now more than 1000) 
on “classification theory” (see Shelah 1978) considered as 
a part of model theory. 
 
3.0  Examples of classifications and the problem  

of their formalization 
 
What we have in mind when we speak of classifications in 
western countries is often a rigid diagram like those of the 
classical age’s natural taxonomies, where organisms were 
grouped together into “taxa,” these groups being given a 
taxonomic rank. These diagrams are, in fact, typical exam-
ples of hierarchical classifications: see, for instance, the 
classification of plants based on sexual organs (Linnaeus 
1758) (see Figure 1) or the classification of animals into 
vertebrates and invertebrates (Lamarck 1801). 

In life sciences, this hierarchical model, largely inherited 
from Linnaeus (kingdom, phylum, class, order, family, ge-
nus, species), is always the same. From a mathematical 
viewpoint, these ordered sequences of divisions are named 
“chains of partitions.” 

But we encounter also in many domains simple parti-
tions, i.e, divisions of a set into nonempty classes, such that 
the intersection of any two of them is empty and their un-
ion is the set itself. Such are the classifications of conics in 
mathematics (circle, ellips, parabola, hyperbola), or what 
we can call in other domains “cross-partitions,” because of 
the superposition of two or more of them: see, for example, 
the Mendeleev table of elements in chemistry, formed by a 
partition of the set of chemical substances into peri- 
ods of growing weights (lines) and, simultaneously, into 
chemical affinities (columns). On closer examination, we 
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Figure 1. The Linnaean classification of plants. 

 
can see that we may get, indeed, a lot of other forms of 
classifications: pseudo- or quasi-hierarchies (ordering on 
intersecting classes), or even simple “systems of classes” 
(with no ordering on them). The reason for all this is that 
we cannot get everywhere strong orders from empirical 
data and that we must often settle for weaker structures. 
In some domains, we even fail to get non-intersecting clas-
ses of the same level. It is the case in social sciences where 
we sometimes encounter complex realities; these are often 
difficult to put into non-overlapping classifications. In par-
ticular cases, non-empty intersections between classes of 
the same level are essential. For example, librarians, in or-
der to optimize information retrieval, usually classify a 
book in different places, because it is needed, for the 
reader, to be able to access it by several entries. Formally 
speaking, it means that one and the same document is lo-
cated at the intersection of multiple classes. This explains 
why we must build more complicated schemes than simple 
partitions or hierarchies. In many situations, “fuzzy” mod-
els (in the sense of Zadeh 1965) extended now to big rela-
tional databases (Meier et al. 2008), or “rough sets” (in the 
sense of Pawlak 1982) are necessary. An object may belong 
“more or less” to some class, and a “cloudy” organization 
is sometimes better than none. In many domains, as well, 

partial orders (semilattices or lattices) will be closer to the 
facts than tree structures (see Figure 2). 

Let us recall here that a (mathematical) tree is a con-
nected graph without any cycle, while a semilattice is just a 
collection of sets where two overlapping sets belong to the 
collection, so like the set of elements they have in com-
mon. A lattice is just both an upper semilattice and a lower 
semilattice. These structures are very widespread in social 
sciences or even urbanism (see Alexander 1965). Let us 
give another example. Look at what the South American 
writer Borges (1999) calls “the Chinese classification,” 
which classifies the animals of the world into the following 
classes: a) those that belong to the Emperor; b) those em-
balmed; c) those that are trained; d) suckling pigs; e) mer-
maids, etc. The French philosopher Foucault (1968) as-
sumes that such a classification is not a rational one and 
refers to a culture completely different from ours. In fact, 
we can only say that we are in front of a weak form of 
classification. However, it can be mathematically ex-
pressed, thanks to a model where classes overlap (Figure 
3). So, such a kind of organization is not irrational at all, 
and does not necessarily belong to some exotic epistémè. 

So we must accept, as modes of organization, different 
types of classifications and many forms of orderings, 
sometimes weaker than hierarchies, sometimes more com-
plex (like, for example, n-cubes). In this context, we decide 
to call “classifications in a large sense” structures such as 
systems of classes, partitions, hypergraphs, hierarchies or 
chains of partitions, semi-lattices, lattices, and so on. 
Moreover, all these structures may be crossed with another 
one and may be also fuzzified. 
 
4.0 Extensional structures 
 
Let us now give true definitions of all the structures previ-
ously mentioned. We shall begin with structures associated 
to the weakest form of data organization and, from there, 
go to stronger ones: mathematics allows us to begin with 
very few axioms that define weak general structures. Af-
terwards, by adding new conditions, we can get other 
properties and stronger models. In our case, the weakest 
structure is just a hypergraph, in the sense of Berge (1970). 
 
4.1 From weak to strong structures 
 
Let E be a nonempty finite set, P(E) the powerset of E. A 
hypergraph is a pair H = (E, P), where E is a set of vertices 
(or nodes) and P a set of nonempty subsets called (hy-
per)edges or links. Therefore, P is a subset of P(E)\Ø. In 
such a structure, the set of edges, does not “cover” the set 
X, because some node may have a degree zero, i.e., may 
have no link to some edge (see Figure 4). 
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Figure 2. The difference between a tree and a semi-lattice. 

 

Figure 3. The beginning of the “Chinese classification.” 

 
Figure 4. A hypergraph. 
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Now, suppose we add the following condition: 
 

 
 
In this case, we say that P is a cover (or covering) of the 
set of vertices E. 
 
Assume now that, for every element, its singleton is in P. 
In symbols: 
 

 
 
then, we get a system of classes, in the sense of Brucker 
and Barthélemy (2007). 

Let us add now the new following conditions. For every 
ci belonging to P: 
 

 

 
 
Then P is a “partition” of E and the ci are the “classes” of 
the partition P (Figure 5). 
 
4.2. The lattice of partitions 
 
Call now x P y, the relation “x belongs to the same class as 
y” and denote P(E) the set of partitions of a set E. A par-
tition P is finer than a partition P’ if x P y ⇒ x P’ y. This 
relation allows us to define a partial order on P(E) that we 
shall denote P ≤ P’. We can see immediately that (P(E), ≤) 
is a lattice because 1) it is a partial order; and, 2) moreover, 

every pair (P, P’) has a greatest lower bound P ∧ P’ and a 
least upper bound P ∨ P’. In Figure 3, the first one is the 
discrete partition, whose classes are singletons. The second 
is the partition with one class, say E. One proves that P(E) 
is complemented, semi-modular and atomic (if the initial 
data E is a non atomic set, we can, under reasonable con-
ditions, reduce the data to the atomic elements of E). 

Example: The lattice of partitions for |E| = 3 (see Fig-
ure 6). 

In this context, a hierarchical classification, i.e, a chain 
C of partitions of the lattice P(E), is a totally ordered subset 
of P(E). We have: C = {P1, P2, ..., Pn} with P1 < P2 < ... < 
Pn and: 
 

  
 
Example: Correspondence between chains and hierar-
chical classifications (see Figure 7). 

Note that the whole set of chains C(E) has itself a math-
ematical structure: it is a semilattice for set intersection. 

This model allows us to get all the possible partitions of 
P(E) and all the possible chains of C(E). The problem is 
that the partitions are very numerous (Table 1). 
 

|E] 1 2 3 4 5 6 7 8 9 

|P(E)| 1 2 5 15 52 203 877 4140 21147

Table 1. 
 
4.3 The case of covers 
 
It is not very easy to examine which classification is the 
best one among, say, several thousands of them. The situ-
ation is worse with weaker structures like covers or even 
minimal covers. Recall that a family F of nonempty subsets 

 

Figure 5. A partition. 

 

Figure 6. The lattice of partition for a 3-element set. 
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of a set E, whose union contains the given set E (and 
which contains no duplicated subsets) is called a cover (or 
a covering) of E. A particular kind of cover is the minimal 
cover. A minimal cover is a cover for which the removal 
of one member destroys the covering property. Of course, 
we can make orderings on covers and build hierarchies of 
covers or minimal covers (Parrochia and Neuville 2013). 
But if the set L(E) of minimal covers is a lattice for the 
refinement relation, the set R(E) of all covers has no inter-
esting properties: it is only a preorder (or a quasi-order) for 
the refinement relation (that we define in the same way as 
for the partition ordering). Moreover, computing the cov- 
ers of a set leads immediately to big numbers (see Table 2). 
So it becomes rapidly impossible to examine the very nu-
merous possible chains of covers. 
 

|E] 1 2 3 4 

R(E) 1 5 109 32297 

Table 2. 
 
5.0 Methods for building empirical classifications 
 
How can we get classes, partitions, hierarchies, pseudo- or 
quasi-hierarchies and so on? Generally, in the real world, 
the rough data presents itself as a non-structured set E of 
objects (animals, plants, books, etc.) sharing (or not) some 
attributes or properties (shape, size, color, etc.). In order 
to make classes, we must first give a sense to the notion of 
“similarity” between two elements of E, the set of objects 
to be classified. 
 

5.1 Distance, metric and ultrametric 
 
We introduce first a mapping d, from E × E into Թ +  which 
must satisfy some of the following axioms:  
 

1. d(x, y) = d(y, x) 
2. d(x, y) = 0 iff x = y 
3. d(x,z) ≤ d(x, y) + d(y, z) 
4. d(x,z) ≤ Max[d(x, y), d(y, z)] 

 
If 1 and 2 are satisfied, d is a distance. If, moreover, 3 is 
satisfied, d is a metric. And if 4 is also satisfied, then d is an 
ultrametric. One proves (Lerman 1970; Benzécri, 1973) 
that it is possible to associate an ultrametric with integer 
values to any chain of partitions. Now if d is an ultrametric 
on E, any function f(d) such that: 
 

1. f(0) = 0 
2). f(λd) > f(d) if λ > 1 and d ≠ 0 

 
is also an ultrametric on E. A chain of partition associated 
with an ultrametric d’ = f(d), where d is the number of the 
partitions and f a monotonically increasing function, is 
named an indexed hierarchy. As said above, any ultramet-
ric is associated with a matrix of distances: the distance be-
tween two elements x and y on the tree is the first level 
where the elements are in the same class. Of course, we 
have d(x,x) = 0 for all x and d(x,y) > 0 when x ≠ y. So, we 
get a total equivalence between chains of partitions, ultra-
metrics and matrices of distances. 
 

 

Figure 7. A classification (right) as a chain of partitions (left). 
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Example: The chain of partitions in Figure 6 admits the 
matrix of distances of Table 3: 
 

 a b c 

a 0 2 1 

b 2 0 2 

c 1 2 0 

Table 3. 
 
Interpreted as an ultrametric matrix, a chain of partitions 
is the semi-ring: 
 

  
 
where is interpreted by min and by max (Gondran 
1976). This structure is named “dioid” in Gondran and 
Minoux (2002). It may be transposed to the set of all ultra-
metric matrices (see also Gondran et Minoux 1979 and 
1984). 
 
5.2 Algorithms for chains of partitions 
 
In order to build concrete hierarchical classification, we 
must first, carefully define the objects to be classified. Sec-
ond, observe on any individual some variables from which 
we shall define a distance S(x, y) between them. Finally, 
define a new distance ∆(x, y) between the classes them-
selves, such that ∆(x, y) gives S(x, y) when those classes are 
reduced to one element. These tedious calculations are 
now carried out by computers. In the course of history, 
three kinds of methods held taxonomists’ attention: hier-
archical bottom-up methods, hierarchical top-down meth-
ods and, finally, non-hierarchical methods (for instance, 
aggregation around moving centroids). Hierarchical meth-
ods imply that relations between classes are ordered. Non-
hierarchical methods are only concerned with the con-
struction of partitions where classes are unordered (so they 
keep away from the construction of actual classifications). 
Top-down methods are necessarily working according to 
independently specified criteria. Non-hierarchical meth-
ods do not use necessarily a notion of distance. Let us ex-
amine all that. 
 
5.2.1. Bottom-up methods 
 
Usually, one considers that bottom-up methods are those 
that give the best and most reliable results (Roux 1985). 
Let us see now how these last methods are working in the 
case of binary chains. 

In such a case, we look for a pair (a, b) such that d(a, b) 
has the smallest value. We aggregate these two elements, 
that is, the first partition P1 is obtained from the discrete 
partition P0 by the operation: 
 

 
 
with: 
 

 
 
To any partition corresponds the aggregation of two par-
ticular subsets. This aggregation is represented by a node 
in the tree (associated with the chain of partitions). We de-
note n(α, β), the node corresponding to the aggregation of 
α and β. To any node may be associated an index I(n) = 
D(α, β). So, we get an indexed hierarchy of partitions. In 
order to define the best among those partitions, one must 
define on them an objective function. Then we have to 
maximize the values of this function for all possible parti-
tions, and finally choose the partition corresponding with 
the greatest value. But nothing assures us that all “optimal” 
partitions constitute a chain. 

Many kinds of distances may be used (Lerman 1970; 
Parrochia and Neuville 2013, 79-80). But when we have a 
representation of the elements of E in the form of a cloud 
of points—each of them being assigned a certain weight 
and located in a metric space—a center of gravity and an 
inertia can be calculated for each subcloud. It is then nat-
ural to look for pairs of points whose aggregation de-
creases the less the dispersion of the cloud, that is to say, 
its inertia. In this case, it is shown that the distance to be 
used is: 
 

 
 
There exist also different strategies of aggregation (Roux 
1985; Gordon 1996). For example: nearest neighbour 
method, diameter hierarchy, or average distance. One of 
the most simple expressions of the average strategy is: 
 

  
 
5.2.2 Top-down methods 
 
This type of classification is performed by successive di-
chotomies, and so, at every step of the algorithm, there are 
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two rules to be applied in order to determine: 1) the choice 
of the class to split; and, 2) the object’s assignment mode 
in each of the subclasses. 

One of the oldest top-down algorithms is that of Wil-
liams and Lambert (1959), who chose to split the class with 
the largest number of objects. Others, like Hubert (1973), 
prefer dividing the class of the larger diameter (remember 
that the diameter of a class is the distance between the two 
farthest points in it). None of the above processes is really 
justified and the right answer, seems to be taking the class 
maximum dispersion. But many formulas can still express 
it. 
 
5.2.3 Non-hierarchical methods 
 
Non-hierarchical methods are particularly useful in classi-
fication problems of pattern recognition issues. In this do-
main, the main difficulty comes from our ignorance as to 
the underlying structure of the space. Should we make an 
assumption of separability, a probabilistic hypothesis, a 
metric hypothesis? One way to give an answer is to make 
a classification on a set T, called “learning set,” ignoring 
the actual forms ω1, ..., ωn. So, one gets ω’1, ..., ω’p classes 
which are only neighboring of classes ω1, ..., ωn, in order 
that, in the ω’j classes, one ω’i class is dominant. There will 
be thus p ≥ n, and ω’1, ..., ω’p will be called “recognizable 
forms.” This classification, that can use several types of 
metrics, can therefore afford to make a realistic assump-
tion about the structure of the space. The problem is then 
to use that structure for assigning an individual x to one of 
the ω’j classes. 
 
5.2.3.1 k-means classifications 
 
One example of this method is the “k-means” classifica-
tion. It helps highlight nuclei A1, ..., Ap (symbolic descrip-
tion) for each of the recognizable forms ω’1, ..., ω’p and dis-
tances d(x, Aj) between individuals and nuclei. Nuclei act-
ing as labeled and the distance d play the role of a mem-
bership function. So, we are reduced to a fuzzy pattern 
recognition problem. 

The “k-means” classification was introduced by 
MacQueen in 1967. Other similar algorithms were devel-
oped by Forgey (1965) (see “mobile centers”) or by Diday 
(1971) (see “dynamic clouds method”). These kind of 
methods have the following advantages: 1) An object can 
be assigned to a class during an iteration, then changes 
class to the next iteration. This is not possible with the hi-
erarchical clustering, for which an assignment is irreversi-
ble; 2) By multiplying the starting points and repetitions, 
one can explore several possible solutions. The disad-
vantage of them is that they do not find out what can be a 
consistent number of classes, or how to visualize the prox- 

imity between classes or objects. The definition of an av-
erage between the data, as well as the calculation of the 
averages, which are very sensitive to outliers, are other lim-
its of this model. 
 
5.2.3.2 Other non hierarchical algorithms 
 
In order to solve this last problem (the sensibility to outli-
ers), other kinds of algorithms have been developed. One 
of them is the PAM-algorithm (partition around medioids) 
(Kaufman and Rousseuw 1990). In this method, each class 
is represented by one of its members named “medioid,” 
and not by a centroid, average of the set of its members. 
After a random choice of initial k medioids, the algorithm 
reviews all the pairs of individuals such as one is a medioid 
and the other not, evaluating whether the exchange of the 
two objects improves the objective function. In the end, 
the different objects are assigned to the closest medioid 
class. However, the renunciation of the centroids induces 
a certain algorithmic complexity and long computational 
times (each iteration is in O (k(n-k)2). But it is possible to 
use some variant like CLARANS (Clustering large applica-
tions based upon randomized search) to reduce to a com-
plexity in O (n). Other methods based on the study of the 
dispersion of classes, on their density, on the quantifica-
tion by grid, on the direct construction of dendograms 
complete the above possibilities. More recently, methods 
derived from biology (neural networks, genetic algorithms) 
or physics (super-paramagnetic clustering) have emerged, 
as well as methods for comparing these classifications 
(Boubou 2007). 

Another type of non-hierarchical method, sometimes 
useful in the domain of imagery, is the Peano scan, a gen-
eral technique for continuous scanning of multidimen-
sional data by a spacefilling curve (see Peano 1890). Hilbert 
(1891) presented a simplified version of Peano curves in 
terms of binary divisions (see examples of Hilbert (left) 
and Peano (right) curves of order 2 in Figure 8), and, then, 
generalized algorithms for images of arbitrary size have 
been invented by many authors.  

 

 

Figure 8. A Peano scan. 

https://doi.org/10.5771/0943-7444-2018-2-184
Generiert durch IP '18.117.9.29', am 18.11.2024, 01:08:32.

Das Erstellen und Weitergeben von Kopien dieses PDFs ist nicht zulässig.

https://doi.org/10.5771/0943-7444-2018-2-184


Knowl. Org. 45(2018)No.2 

Reviews of  Concepts in Knowledge Organization 

192 

These methods immediately apply to classification. Let Թn 
be an n-dimensional space, i.e., an object represented by n 
measurements. Assume Թn is divided into rnp hypercubes 
H, r and p for varying accuracy. One sequentially explores 
these Hs with a “Peano scan” of order p. As we can define 
it now in a very general way, a Peano scan is indeed an 
addressing technique built by a recursive procedure on p. 
In this particular case, it is a technical addressing of the 
hypercube (1/rp)n with an address (k1, k2 , ..., kn).  

We may now define what is a rn neighbouring. Let H 
and H’ be two hypercubes, whose respective addresses are 
(k1, k2 , ..., kn) and (k’1, k’2 , ..., k’n). 

H and H’ are rp-neighbors means: 
 

 
 
One shows that two Peano scans are sufficient to get the 
neigbourhings and we do not need any kind of distance to 
build the classification. 
 
5.3 Algorithms for covers and weak structures 
 
Let Q be a cover on a set E and Qi ⊂ P(E) the powerset of 
E. Q is associated with the binary relation: 
 

  
 
A cover Q is said to be finer than a cover Q’ if: 
 

 
 
for all x,y ∈ E.  
 
Let us now define a sequence Q1, Q2, ..., Qh,... of covers on 
E, totally ordered by decreasing fineness. This sequence 
meets the similarities between objects if the first index h, 
for which any two given objects of E are combined in one 
part of Qh is even smaller than the similarity of the two 
objects, is large. An algorithm built by Lerman (1970, 73) 
allows obtaining, naturally, a finite family of totally ordered 
sequences of covers. Each respects plainly, for a given de-
gree of fineness, the similarities between objects. 

Let ω be a preorder whose classes are B1, B2,..., Bp. As-
sume we already got a chain of partitions (P0, P1,..., Pq). To 
each partition Pi, we associate now a sequence of covers in 
the following way: for some h, a member of the cover Qh 
will be any class El of partitions Pi, or any class em of the 
partition corresponding to the cover of order h. Since, in 
practice, we are mainly interested in low-overlapping cov- 

ers, Lerman proposes to determine, along with the previ- 
ous sequence (P0, P1,..., Pq), the sequence (Q1

1, Q1
2,..., Q1

q-1), 
the Q1

i being defined from Pi and Bi. For example, suppose 
we got the following chain of partitions (P0 , P1, P2, P3), 
with: 
 

P0 = {{f}, {a},{d},{c},{b},{e}} 
P1 = {{f}, {a, d},{b, c}, {e}} 
P2 = {{a, d, f}, {b, c, e}} 
P3 = {{a, b, c, d, e, f}} 

 
Let us remember that, in a chain of covers, the discrete 
cover is the discrete partition and the rough cover is the 
rough partition: so, only the intermediate levels are modi-
fied. In this example, we get: 
 

Q1
1 = {{f}, {a, d, f},{b, c},{b, e}} 

Q1
2, = {{a, d, f},{b, c, e},{d, e}} 

 
5.4 Unsolved problems 
 
Despite the fact that the previous methods are widespread, 
they are still not convincing, because they lead to relatively 
unstable classifications. There are two kinds of instability: 
an intrinsic instability, due to the plurality of methods (dis-
tances, algorithms, etc.) that can be used to classify the ob-
jects, and an extrinsic instability (our knowledge is chang-
ing), so the definitions of objects (or attributes) are evolv-
ing over time. 

Intrinsic instability comes from the possibility of choos-
ing different formulas for expressing the distance between 
objects and different kinds of algorithms for aggregating 
classes. In general, the objects of the world have no ultra-
metric distances between them. The “rough data” is gen-
erally a numeric table which crosses objects and properties 
(predicates or attributes), these ones presenting sometimes 
different modalities. Objects can share some common 
properties, but they can also have specific ones. How may 
we choose a “good” formula to express this distance (or 
similarity measure)? In order to compare different similar-
ity measures, Lerman (1970) defines the following varia-
bles: 
 
– s: number of attributes which are common to the object 

x and to the object y (= what x and y are) 
– t: number of attributes which are not possessed by x 

and by y (= what x and y are not) 
– u: number of attributes possessed by the object x and 

not by the object y (= specificity of x) 
– v: number of attributes possessed by the object y and 

not by the object x (= specificity of y) 
– T: Sum of all the attributes (T ≤ s + u + v). 
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Now a “similarity measure” is a function S, from E × E 
into N3, such that, for all (x,y) of E × E, we have S(x,y) = 
S (s, u, v) ∈ N3. The problem is that we can define S in 
many ways. In principle, to solve the problem, we would 
have to compare all the possible distances that can be cho-
sen and measure the proximity of each of them to an ul-
trametric. Unfortunately, this is not possible, except for 
very small samples. So we are led to use approximative al-
gorithms, which suppose, at their turn, new more or less 
arbitrary choices: nearest neighbour, diameter, average 
link, center of gravity, dispersion of elements within a 
class, etc. All that gives at the end very different results, so 
the final classification is quite unstable. 

Let us say now some words about extrinsic instability. 
This instability is due either to the quantitative variations 
of the populations of objects to be classified, or to the 
qualitative changes concerning the knowledge of their 
properties in the course of time. For instance, initial ob-
jects may be imprecise (Apostel 1963); new objects can 
also arrive (Lambert 1984) or old objects can disappear; 
moreover, unusual or strange objects (“monsters”) may 
appear in the course of time (Dagognet, 1970); finally, a 
discovery of new properties for some apparently well-
known objects (resp. rejection of old ones) may also hap-
pen. 

As an answer to intrinsic instability, Lerman (1970) 
proved that, if the number of attributes (or properties) 
possessed by the objects of a set E is constant, the associ-
ated quasi-order given by any “natural” metric is the same. 
But when the sample variance of the number of attributes 
is a big one, of course, the stability is lost. Similarly, if we 
classify the attributes, instead of classifying the objects, the 
reverse proposition is not true. 

For extrinsic instability, the answers are more difficult 
to find. Of course, we may think of methods used in library 
decimal classifications (UDC, Dewey, etc.), which make 
possible infinite ramified extensions; starting with ten big 
classes, you divide each of them into ten others, and so on. 
Then, after having used integers, associated with the larger 
classes, it may be useful to introduce decimal points and to 
transform the first into decimal numbers. A decimal num-
ber being a periodic or aperiodic unlimited symbol, it is 
always possible to add new indices, and so, new classes, in 
the classification. But these classifications assume that 
higher levels are invariant and they have also the disad-
vantage to be enumerative and to degenerate rapidly into 
simple lists. Pseudo-complemented structures (see Hill-
man 1965) also exist with some kinds of waiting boxes (or 
compartments) for indexing things that have not yet been 
classified. We can get, as well, structures whose transfor-
mations obey certain rules that have been fixed in advance. 
That is the case of Hopcroft 3-2 trees, for instance (see 
Larson and Walden 1979). But these systems are not abso- 

lutely convincing; in both cases, the problem of justifying 
the underlying topology or the transformation rules re-
mains unsolved. 

As a consequence, the impossibility of solving the prob-
lem of instability of classifications invites us to look for 
some clear composition laws to be defined on the set of 
classifications over a set and to a good algebra of classifi-
cations, if it one exists. This search is all the more crucial 
as a theorem proved by Kleinberg (2002) shows that one 
cannot hope to find a classifying function which would be 
together scale invariant, rich enough and consistent. This 
result explains that we cannot find, in fact, empirical stable 
classifications by using traditional clustering methods, 
even if computer science produces every year a lot of new 
algorithms or tries to solve the problem in many ways, in-
cluding decompositions into subproblems supposedly 
leading to better approximations (Veloso and Meira 2011). 
 
6.0 Intensional methods 
 
Since its birth, classical logic has always admitted two types 
of interpretation: extensional and intensional. “All men are 
mortal” may mean in fact either that the class of men is 
contained in the class of mortals, or that the predicate of 
“mortality” is implied by the existence of the predicate of 
“humanity.” For years, this question has divided the logi-
cians, as evidenced by the numerous discussions between 
Plato and Aristotle, Pascal and Ramus, Jevons and Joseph, 
etc. More recently, the development of computer science 
brought back this view, since for declarative languages and 
particularly object-oriented ones, pure extensional classes 
are rather uncommon. In this context, the preference is 
now given to the intensional approach. 

In the intensional interpretation, a class is in corre-
spondence with one or several properties which define its 
elements. Generally, the way the properties are found is 
not specified. It may be manually done or by using some 
technical approach like Galois lattice and conceptual anal-
ysis (Ganter and Wille 1999). The requirements that must 
be satisfied to make a good (hierarchical) classification 
have been posed by Apostel (1963). A division (or parti-
tion) is essential, and there are no individuals having one 
of the Qi-properties without having property P. A classifi-
cation is a sequence of implicative-disjunctive proposi-
tions; everything which has the property P has also one of 
the n properties Q1 ... Qn. Everything which has the prop-
erty Qr has also the property S, and so on (Apostel 1963, 
188). A “natural” classification is such that the definition 
of the domain to be classified determines in a unique way 
the criteria’s choice of classification. The intensional 
weight w(P) of a property P is the set of properties’ disjunc-
tions that this property implies. A partition immediately 
follows another one if, for all P-properties of the first and 
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all Q-properties of the second, disjunctively implied by 
these first; there are no properties R disjunctively implied 
by P and impliying disjunctively Q. An intensional optimal 
classification would have to satisfy the following require-
ments. 
 
1.  Each level has a partition basis.  
2.  No new partition basis is introduced before the previ-

ous is depleted.  
3.  Each partition is essential.  
4.  The classification tree is regular.  
5.  The succession of partitions is obvious. 
 
In a natural intensional classification, a scope definition to 
classify must determine in one and the same way the 
choice of classification criteria. Finally, the partition that 
follows immediately the trivial partition should be essen-
tial. The problem is how to get essential partitions and how 
to obtain stable classifications given the constant flow of 
information generated by an undefinitely growing 
knowledge. 
 
7.0 Classifications and flows of information. 
 
During the 1970s, Barwise and Seligman (1997) wanted to 
create a new theory of information, involving the idea that 
information flow is made possible by “regularities” in sys-
tems. Rather than develop a machinery for analyzing those 
regularities, they built instead a mathematical theory based 
on their mere existence. The starting point is precisely the 
notion of classification, which thus appears in a new light. 
For the authors (see Devlin 2001), a classification is a 
structure A = ۦA, ΣA,|= Aۧ, where A is a set of objects 
to be classified, called the “tokens” of A. ΣA is a set of 
objects used to classify the tokens, called the “types” of A, 
and |=A is a binary relation between A and ΣA which 
determines which tokens are classified by which types. A 
familiar example to logicians is when the types are sen-
tences of first-order logic and the tokens are mathematical 
structures, a |= α being the relationship that the structure 
a is a “model” of the sentence α. The authors then develop 
a machinery for discussing the “logic” by means of which 
the system can support the flow of information. 

What is interesting for us in this project is, first, the no-
tion of “informorphism” the authors define between two 
classifications. For example, let A = ۦA, ΣA, |=Aۧ and C 
-C, ΣC , |=C ۧ be two classifications. An “infoۦ =
morphism” between A and C is a pair f = (f∧, f∨) of func-
tions that makes the following diagram commute: 
 

 
 
This means that for all tokens c of C and all types α of A: 
 

f∨ f∨(c) |=A α iff c |=C f∧(α) 
 
One usually refers to f∧ as “f-up” and f∨ as “f-down.” One 
takes account of the fact that the functions f∧ and f∨ act in 
opposite directions by writing f: A C. It may be the 
fact, for example, of two mathematical theories. 

Now an information channel consists of an indexed fam-
ily C = {fi: Ai  C}i∈I of infomorphisms with a common 
codomain C, called the “core” of the channel. The intuition 
is that the Ai are individual components of the larger system 
C, and it is by virtue of being parts of the system C that the 
constituents Ai can carry information about one another. 
Suppose A and B are constituent classifications in an infor-
mation channel with core C. A token a being of type α in A 
carries the information that a token b is of type β in B relative 
to the channel C if a and b are connected in C and the trans-
lation of α entails the translation of β in Th(C) (Th(C) is the 
theory of the channel core). It is clear that the types in C 
provide the logical structure (the regularities) that gives rise 
to information flow, but information only flows in the con-
text of a particular token c of C, i.e., a particular object. 

Then, Barwise and Seligman make use of category the-
ory, and particularly of the notion of “colimit,” for getting 
a method for combining classifications. Given classifica-
tions A and B, one defines the colimit A+B as follows. 
The tokens of A+B consist of pairs (a, b) of tokens from 
each. The types of A + B consists of the types of both, 
except that, if there are any types in common, one must 
make two distinct (indexed) copies in order not to confuse 
them. There are natural infomorphisms σA: A  [A + 
B] and σB: B  [A + B] defined thus: 
 
1.  σ∧A(α) = αA (the A-copy of α), for each type α of A 
2.  σ∧B(β) = βB, for each type β of B 
3.  For each token (a,b) of A+B, σ∨A((a,b)) = a and σ∨B((a,b)) 

= b. 
 
The classification A+B has the property that, given any 
classification C and infomorphisms f: A  C, g: B  
C, there is a unique infomorphism h = f + g such that the 
following diagram commutes: 
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All that is good mathematics and explains well how infor-
mation constraints may translate from a classification to 
another. However, it supposes we already get some classi-
fications and have a complete theory of domain C. If not, 
the extended theory is more complicated. In this case, one 
must use a “local logic” to show how one can catch partial 
information. Then the theory explains more how the 
agents reason about information than how the real world 
actually works. It may be a complement for Shannon the-
ory of information, but not a theory of classifications as 
such. 
 
8.0 Towards a general theory of classifications 
 
When we ask how to build good concrete classifications, 
the answer is also a mathematical approach of the prob-
lem. But the solution does not consist in using computers 
and running programs without thinking anymore. We 
have, before all, to get a sound mathematical basis in order 
to make stable classifications. To this aim, we can first take 
a glance at mathematical classifications themselves. 
 
8.1 Classifications inside mathematics 
 
Mathematics has dealt with classification for a long time. A 
quite common situation in this domain is: 1) the existence 
of a collection of objetcs X; and, 2) an equivalence relation 
ℛ on X. Now a complete classification of X up to ℛ con-
sists of: a) a set of invariants I; and, b) a map c: X → | such 
that x ℛ y ⇔ c(x) = c(y). We can give a lot of examples when 
this method is working very well (the most famous case is 
the classification of finite semisimple groups into seventeen 
infinite families plus the sporadic groups). Most often (Ke-
chris 2002), the collection of objects to be classified may be 
viewed as forming a “nice” space, for example a standard 
Borel space. In this case, the theory of Borel equivalence re-
lations allows us to study the set-theoretic nature of possible 
(complete) invariants and to develop a mathematical frame-
work for measuring the complexity of classification prob-
lems. This way of approaching these problems in mathemat-
ics, has become, for some years, a new area under active in-
vestigation. The question of cataloging a class of mathemat-
ical objects up to some notion of equivalence by invariants, 

and the closely related theory of descriptive dynamics, i.e., 
the theory of definable actions of Polish groups on Polish 
spaces, have been developed by several authors in a very 
promising manner (though some impossibily results have 
been encountered in a few cases). Of course, by the means 
of category theory and automorphism groups, we can al-
ways find a very general method to compare mathematical 
structures, and so, we should be theoretically able to classify 
a lot of them (groups, rings, matrices, etc.), as Pierce (1970) 
has already shown. However, in the details, many problems 
arise, especially conterning big collections of very general 
structures (graphs, fields, varieties and so on). One could 
think it possible to turn around the problem in using logic. 
Generally speaking, mathematical structures satisfy some 
axiomatics and, as such, may be described as logical theories. 
Model theory—and in model theory, particularly the so-
called “classification theory” created by Shelah (1978)—tries 
to classify those abstract logical theories by studying the re-
lations existing between them and their mathematical inter-
pretations (or models). But, to pursue this aim, classification 
theory must often deal with an infinite number of structures, 
and the way the infinite is defined takes a great importance, 
and very much influences the results we get in the end. 
Moreover, some theories cannot be classified at all, because 
they are not stable and do not have good structure theorems. 
 
8.2 Searching an algebra of classifications 
 
So, we need an algebra of classifications, which can explain 
all their transformations. The problem is that such an al-
gebra should be: 
 
– commutative (if a and b are classes, a • b = b • a); 
– nonassociative (if a • (b • c) is a classification, (a • b) • c 

is not the same classification). So, we have necessarily: 
a • (b • c) ≠ (a • b) • c. 

 
This recalls nonassociative products of Wedderburn-Ether-
ington (see Comtet 1970). We can improve this notation by 
suppressing parentheses if we write for instance bc • a• in-
stead of a • (b • c) (Reverse Polish Notation (or RPN) in-
vented by Lukasiewicz in the 1920s). Let us give some ex-
amples of classifications written in RPN. In words, we have: 
 

a, ab•, ab•c•, ab•cd••, abc••de••. 
 
Here are the corresponding diagrams (see Figure 9). 
 
We get the following results (Parrochia and Neuville 2013): 
 
 Proposition 1 (RPN-classification correspondence): A 

classification can be attached to each RPN sentence but 
the reverse is false. 
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 Proof: To prove this, it is sufficient to choose a classi-
fication whose partitions are not covering themselves. 
For instance, let C ={(abcde), (a, bcd, e), (a, b, c, d, e)}. 
There is no RPN sentence for such a classification. (As 
usual, in order to simplify writing, we have replaced 
{{a},{b},{c}} with (a, b, c).) 

 Definition 1 (notion of “magma”): Let E be a set of var-
iables, representing classes. Let • be an internal law of 
composition, i.e, a mapping from E × E into E. Ac-
cording to Bourbaki, (E,•) is a “magma.” 

 
 Proposition 2 (classification as a magma): Each classifica-

tion (written in RPN) is a commutative and non associ-
ative magma: 
1.  a ∈ E, b ∈ E, a • b = b • a    (commutativity); 
2.  a ∈ E, b ∈ E, c ∈ E: (a • b)•c ≠ a • (b • c)    (non  

associativity). 
 
 This structure can be extended to the set of all classifi-

cations over a set (which is also a non-associative 
magma). 

 
 Proposition 3 (isomorphic classifications): Two classifica-

tions with n elements are “isomorphic” if their connect-
ors are located in the same place (when we use RPN 
notation). 

 Example: ab•c• and b•ac• are obviously isomorphic. 
Definition 2 (extension of a classification): A classifica-
tion A with n elements extends a classification B with p 
elements if B is included in A. 
Example: ab•c•d• extends ab•c•. 

 
We need an algebra of classifications, because we would 
like to combine classifications between themselves and to 
generate complex classifications from more simple ones—
as Barwise and Seligman do in the case of information 
flows. The problem is that the compound of two classifi-
cations is not necessarily a classification, because the order 
structure on the levels may be lost when we go from one 
to the other. 

Intuitively, in order to be joined with a classification C1, 
a classification C2 may have a structure which, even if it 

extends the structure of C1, however, must also respect this 
very structure. So, the operation ⊕ may be admitted as an 
internal composition law only if C3 = C1 ⊕ C2 remains a 
classification. To express that, we need a particular algebra. 
But it is not, in fact, easy to find. 
 
8.3 Some candidates among the algebras 
 
As we have seen, an algebra of classifications should be 
commutative and non-associative. But there are very few 
algebras like that. Indeed, most of the algebraic structures 
are associative ones. Getting such an algebra is a very dif-
ficult problem and it is the reason why, for the moment, 
we get only some candidates but no real answer: Among 
the well-known existing algebras, we have: K-algebras, 
Hopf algebras, Dendriform algebras, right-symmetric alge-
bras, etc. Some of them are working well on trees, but not 
necessarily on classification trees. For example, that is the 
case of the Dzhumadil’daev and Löfwall algebra (2002): 
most of the time, we cannot interpret its tree-combina-
tions in the view of taxonomic transformations. However, 
more recently, Drensky and Holtkamp (2008) have con-
nected trees, nonassociative algebras and K-algebras. More 
precisely, they described free non-associative algebras in 
terms of labeled reduced planar rooted trees, an approach 
that can certainly be applied to classifications. 
 
8.4  A common construction for tree-like  

classifications and hypercube-like  
classifications 

 
Instead of the missing algebra of classifications, let us in-
troduce some elements of graph theory. As Mulder (2016) 
shows, the simplest way to obtain a tree from a smaller one 
is by adding a pendant vertex (a vertex of degree 1). Sup-
pose we can cover a tree-like classification C with two sub-
tree-like classifications C*1, and C*2 that have exactly a ver-
tex in common. To obtain a larger (tree-like) classification, 
we take two disjoint copies of these (subtree-like) classifi-
cations C1 and C2, as is shown in Figure7 (right), and then 
join the vertices in these subtree-like classifications that 
correspond to the common vertex in C*1, and C*2. We ob- 

 

Figure. 9. Diagrams of classifications written in RPN. 
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tain an expansion with respect to the covering tree-like 
classifications C*1, and C*2 (see Figure 10). 

Each tree-like classification can be obtained by a succes-
sions of such expansions from the one vertex graphe K1, 
but we know also that hypercubes can be obtained in a sim-
ilar manner by expansion, as depicted on the Figure 11. 

One covers the n-cube on the left by two subcubes, 
both of which equal to the whole n-cube. One takes two 
disjoint copies of these two subcubes and join respective 
vertices in the two copies. Thus, one gets a hypercube of 
dimension n+1. Every hypercube can also be obtained by 
a finite sequence of such expansions, starting from the one 
vertex graphe K1. So this construction is a common prop-

erty of tree-like classifications and hypercube-like classifi-
cations. We shall not give its true formalization, but it can 
be rigorously expressed (see Mulder 2016, 155-56). 
 
9.0 Conclusions 
 
9.1 The missing theory 
 
At this time, a general algebra of classifications on a set is 
not known. However, we are invited to search it, for two 
reasons: 1) the world is not completely chaotic and our 
knowledge is evolving according to some laws; and, 2) 
there exist, for sure, quasi-invariant classifications in phys-

 
Figure 10. Expansion of a classification. 

 
Figure 11. Expansion of a hypercube 
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ics (elementary particle classification) in chemistry (Men-
deleev table of elements), in crystallography (the 232 crys-
tallographic groups), etc. Most of these “good” classifica-
tions are founded on some mathematical structures (Lie 
groups, discrete groups, etc.). It is therefore not absolutely 
unrealistic to think that the “dream” of a general theory 
for classifications will come true, as anything that has a 
structure can be explained mathematically. 
 
9.2 A “philosophical” view 
 
To sum up the question of a classification theory, we may 
propose the scheme in Figure 12. 
 
1)  When our mathematical tools apply to sense data, we get 

only “phenomenal” classifications (by clustering meth-
ods); 

2)  When our mathematical tools deal with crystallographic 
or quantum structures, we get “noumenal” classifications 
(for instance, by invariance of discrete groups or Lie 
Groups). Of course “noumenons” never give “things in 
themselves.” Even for Immanuel Kant, they are only 
negative or problematic ideas (see Kant [1781] 1998, 348-
9). Let us recall that, for Kant, a noumenon would be the 
idea of the thing in itself, if this idea existed. But it does 
not exist, at least in a positive form. However, the French 
philosopher Gaston Bachelard (1936) has further weak-
ened this Kantian notion of “noumenon” in that of 

“metric noumenon,” i.e, a noumenon relating to the 
power of our scientific instruments, or more generally, to 
the power of our theoretical knowledge; the same Gas-
ton Bachelard (1933, 140) used to say that, very often, a 
scientific instrument is but a reified theorem. We, there-
fore, mean by “noumenal classifications” those classifi-
cations based on mathematical structures and robust as-
sumptions of our theoretical knowledge. 

3)  When we look for a general theory of classifications (fi-
nite and infinite), we are in the domain of pure mathe-
matics and face the problem of the construction of the 
continuum; for example, under the continuum hypoth-
esis, one proves that the infinite set of partitions P(E), 
defined on a countable set E, is an uncountable set with 
the same cardinality as Թ, the set of real numbers. But 
other hypotheses can be admitted, and there are many 
ways, in mathematics, to see the continuum and to per-
form the construction of it. 

 
9.3 Final remarks: from continuum to empirical data 
 
Today, one has forgotten that Cantor’s mathematical re-
search on the sets of points debouched on a conception of 
matter and a classification of everything which was in-
tended as a general theory of the construction of events. 
His aim was to build a kind of mapping between mathe-
matical elements and natural phenomena through the con-
cept of the “power of a set” (See Cantor (1885) reprinted 

 

Figure 12. The whole domain of classification theory.
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in Cantor (1932) and a letter from Canter to Mittag-Leffler 
(Meschkowski 1967)).  

At the present, of course, we cannot anymore accept 
Cantor’s ideas on classification of natural phenomena. 
However, it still exists a natural correspondence between 
mathematics and concrete classifications. A well-known 
example is Fisher’s data set, collecting the morphologic 
variation of Iris flowers of three related species: Iris setosa, 
Iris virginica and Iris versicolor (Fisher 1936). It shows 
that the length (L) and width (W) of sepals and petals, 
measured in centimetres, were sufficient to classify Iris 
flowers. If L< 2.45, then they belong to |. setosa. If not, 
one considers W. If W < 1.75, then the Iris is vVersicolor. 
If not, it is virginica. Crucial values of L (2.45) or W (1.75) 
are real numbers and indices of classifications. 

A recent conjecture (see Parrochia and Neuville 2013) 
is that all classifications on a set (represented by non-inter-
secting ellipsoïds in a n-space) are convergent in one and 
the same point, which is the index of the classification. So, 
without any additional hypothesis, the infinite set of all 
classifications is but the continuum of the real line. 
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