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 1. Introduction 
Theoretical and empirical research in Organisational Behaviour (OB) has been quite 
successful: the discipline has its own identity despite cutting across various “tradi-
tional” scientific disciplines, for some phenomena like work motivation or group work 
the insight is considerable and last but not least, the topics that are the traditional fo-
cus of OB receive unbroken attention from the academic as well as the practitioners’ 
world. 

Yet a growing uneasiness about some developments or, in other parts, a lack of 
development starts to grow. The following elements could be seen as potential defi-
ciency areas where new developments are needed: the current emphasis on individuals 
in organisations while neglecting larger social units or the organisation itself, the lack 
of attention to the temporal aspects, dynamics and complexity of OB phenomena in 
general and larger social systems in particular, and a scarcity of research methods that 
can be applied to dynamic systems. 

While these shortcomings are well known for some time, there have been a num-
ber of attempts to make use of theories and methods that have been developed in 
other disciplines dealing with complex systems. Chaos theory is a good example for 
such attempts. 

Apart from a steady interest in non-linear models in the area of economics (e.g., 
stock market modelling) the frequent use of chaos theory or related concepts in man-
agement literature or publications on organisational behaviour in the 1990s did not 
sustain. Concepts like fractal manufacturing or fractal companies (Warnecke 1993), 
strategic approaches at the edge of chaos (Brown/Eisenhardt 1998), organisation as 
flux and transformation (Morgan 1997) and others are largely metaphorical (for an 
overview see Stacey et al. 2000), and sometimes mostly rely on technical terms the au-
thors use to impress the reader (Sokal/Bricmont 1998). Additionally, many concepts 
referring to chaos management and pretending to be directly derived from “new sci-
ence” are after all just old wine in new bottles. Nonetheless, as Allan Sokal (1998) ob-
served, many authors hold “forth at length on scientific theories about which one has, 
at best, an exceedingly hazy idea. The most common tactic is to use scientific (or 
pseudo-scientific) terminology without bothering much about what the words actually 
mean” (20). Furthermore, empirical research using chaos theory in the field of organ-
isational behaviour never really existed. 

This paper tries to contribute to potential development areas in OB in terms of 
theoretical foundations and research methods by pursuing three goals. 
• First, the paper presents the basic concepts of a theory family holding promises 

to remedy some of the deficiencies in OB diagnosed above. 
• Second, it describes some methods used within the scope of these theoretical 

concepts. 
• Third, it will demonstrate the potential usefulness of these theoretical concepts 

and methods by applying them to empirical research in the area of managerial ca-
reers. 
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The “common denominator” of the threefold purpose of this paper is the focus on 
the complexity of systems which is an integral part of many OB phenomena at all lev-
els of analysis. 

2. Theorising about complex systems 
More than one hundred years ago the French mathematician Henri Poincaré took a 
first glance on a complex dynamic we are now calling deterministic chaos. In 1889 he 
discovered – upon attempts to solve the problem of three interacting bodies by means 
of the Newtonian laws of gravitation – that even tiny errors or deviations in initial 
conditions produce vastly different outcomes. What is generally regarded today as an 
enormous merit of Poincaré bothered him considerably when he made his discovery: 

“...it may happen that small differences in the initial conditions produce very great ones in 
the final phenomena. A small error in the former will produce an enormous in the latter. 
Prediction becomes impossible, and we have the fortuitous phenomenon” (Poincaré 1908 
cited from Peterson 1999) 

It was not before the 1960s that this discovery by Poincaré was thoroughly under-
stood and in some cases re-discovered (Lorenz 1963). Today phenomena like nonlin-
ear phase transitions, self-organisation, butterfly effect, fractal geometric structures 
and others are well established concepts in natural science. Apart from a widespread 
and not very well-defined pool of theories like complexity theory (for an overview see 
e.g. Mainzer 1994; Mainzer 1999), the theory of dissipative structures (e.g. Prigogine 
1955; Prigogine 1987), synergetics (e.g. Haken 1990; Haken/Wunderlin 1991), the 
theory of nonlinear dynamical systems (for a mathematical overview see Anishchenko 
et al. 2002), or chaos theory (e.g. Li/Yorke 1975; Schuster 1995), all of these concepts 
(for a detailed and commented list of references see Hilborn/Tufillaro 1997) deal with 
the complex behaviour of a special class of systems. In contrast to a system behaviour 
controlled from outside, they all focus on the self-organising dynamics of systems far 
from thermodynamic equilibrium. 

The perspective of the theories of dynamical systems fits much better to a lot of 
issues discussed in the area of organisational behaviour than classical linear models or 
even cybernetic approaches do. Furthermore, the methodological and theoretical as-
sumptions of the theories of dynamic systems can also innovate empirical studies in 
organisational behaviour, leading to a better understanding of organised complexity 
(Willke 1989), a highly improbable but nonetheless quite frequently occurring phe-
nomenon, not only in nature. While this is not the place to discuss differences and 
similarities between various theoretical perspectives in detail, it is necessary to define 
major constituents of our theoretical approach: the theoretical roots in synergetics 
coming from natural sciences, the notion of open systems, and the concept of self-
organisation and phase transition, all of them linked to synergetics. 

2.1 Synergetics 
It was mentioned above that there is not just one but several theories trying to explain 
the behaviour of complex systems. Besides the rich discussion coming from social sys-
tems theory (see, e.g., Luhmann 1984; Kasper et al. 1999), most theories on dynamical 
systems from natural sciences and mathematics are highly compatible in their basic as-
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sumptions and in their mathematical foundations. Still, a lot of differences can be 
found in terminology, main paradigm, and focus of interest. For many of them, syner-
getics provide a key point of reference. 

Synergetics was introduced by Hermann Haken in the early 1970s, at first to ex-
plain self-organising phenomena occurring in a laser light source (Haken 1970). Based 
on a clear mathematical formalisation, self-organisation can be understood as a spon-
taneous spatial-temporal pattern formation on a macroscopic level. There are several 
rather simple systems, first described in physics and chemistry, showing such sponta-
neous pattern formation. One example is the laser light, a highly ordered emission of 
light with only one frequency despite being based on billions of light sources, namely 
the atoms of the laser material. In chemistry, the Belusov-Zhabotinsky reactions are 
well known examples of self-organising processes, first explained by Prigogine (e.g. 
1955). Some of these chemical reactions lead to spatial patterns like coloured spirals or 
to a periodical colour-changing pattern (chemical clocks). 

Synergetics cannot only be applied in natural science. It is also arguably the most 
appropriate theory to explain spontaneous transitions between human movement pat-
terns (e.g. Haken 1992, for an overview: Jirsa et al. 1998), or to understand self-
organisation in medicine (Glass/Mackey 1977; Mackey/Milton 1987; an der Heiden 
1992) and clinical psychology (Tschacher et al. 1992; Schiepek/Strunk 1994), in per-
ception (Haken 1979; Stadler et al. 1991; Haken 1996), cognition (Stadler/Kruse 1990; 
Stadler et al. 1996; Stadler/Haynes 1999), group (Langthaler/Schiepek 1996) and so-
cial processes (Weidlich/Haag 1983). 

2.2 Systems characteristics 
The definition of what can be interpreted as a system depends on the viewpoint of a 
chosen systems theory. While definitions differ in some aspects, a basic definition of a 
system can be given with respect to two components. First, a system is a unit consist-
ing of elements, which in turn can be seen as units, too. Second, the elements of a sys-
tem are related by interdependencies. According to this definition, a system is more 
than a mere collection of elements as there must be a structure of relations between 
the elements. In that sense a pile of sand is no system due to a lack of relations be-
tween the sand grains (although by assuming a special viewpoint one may even postu-
late relations between ordinary sand grains, see Bak et al. 1989; Bak/Chen 1991). 

In a (quite popular) interpretation of the given definition one may argue that the 
whole universe is the one and only relevant system because everything is more or less 
directly related to everything else. But there is more to the term “system” than that: A 
system is a functionally closed unit, where the interdependencies between the ele-
ments in the system are quantitatively stronger and qualitatively more productive than 
the system’s environment. 

Starting from this minimal definition, different theories further narrow it down by 
focusing on special types of elements or on typical system structures. Cybernetics 
(Wiener 1948) for example emphasizes the importance of negative feedback while a 
vicious circle is based on positive feedback structures between the system’s elements. 
Due to its mathematical underpinning, synergetics is based on a quantitative concept: 
elements are variables and the relations between the elements can be represented as 
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mathematical functions (Klir 1991: 4). Insofar, a system can be modelled by formalis-
ing the elements and their relations as a set of equations, i.e., an equation system. 

But synergetics is not only interested in a system’s structure formalised in mathe-
matical terms, it is much more interested in the behaviour of such systems, so the 
equation systems are used to describe how the variables change their values over time. 
Synergetics therefore deals with differential equations over time. This is admittedly 
nothing that distinguishes synergetics from classical mechanics, where the motion of 
an object over time is also described by using differential equations. But despite being 
based on the very same mathematical underpinnings, classical mechanics leads to 
mostly trivial, purely deterministic, and easy-to-predict system dynamics. In contrast, 
synergetics provides insight into very complex processes: erratic, non-trivial, and 
sometimes not even predictable behaviour of systems. The main differences between 
classical mechanics and synergetics leading to the different behaviours are threefold: 
First, mechanical systems are limited by the second law of thermodynamics (for a 
more detailed overview see Uffink 2001). Although no energy gets lost in a closed 
system, it is gradually transformed into useless warmth and the system’s behaviour 
dies down after a very short while. All movements of such systems are merely 
transitions on a straight way to the system’s death. Therefore, these systems (all closed 
systems, actually) are not able to exhibit complex patterns of self-organisation. Syner-
getics, however, deals with thermodynamically open systems, where a permanent en-
ergy flow enables the system to develop complex self-organising behaviour. Second, 
the mechanical approach to systems mostly remains focused on an interplay of only 
two variables, which excludes the possibility of complex non-trivial system behaviour 
(e.g., Poincaré and the three-body-problem, see above). Third, interactions of variables 
in mechanical systems are in most cases limited to a one-way perspective, leading from 
one independent to one dependent variable. Synergetics, however, deals with feedback 
loops, where positive and negative feedback builds a system of circular causality. 

2.3 Self-organisation 
Synergetics shows that self-organisation is observable on a macro level of a system, 
where a formation in time or space can be observed as an ordered pattern. But these 
observable patterns on the macro level are determined by the behaviour of elements 
located at the micro level of a system. In a process of circular causality the micro level 
builds up the macroscopic pattern, which in turn forces the elements of the micro 
level to behave in a certain way so that they fit into the pattern. Before self-
organisation sets in, there is a “tournament” of possible behaviours (modes). At this 
stage, the elements’ behaviour in total is random. Put in an oversimplified way, every 
element does what it likes to do. The technical term for this random behaviour, where 
all possible modes may happen with equal probability, is “symmetry”. 

As soon as self-organisation starts, a radical change called “phase-transition” oc-
curs – an avalanche-like process where a fractionally dominant mode progressively be-
comes the dominating pattern, forcing more and more modes into its behaviour. 
Haken (e.g. 1990) calls this process of forced ordering “enslaving”: the order parame-
ter, which is the behaviour occurring at the macro level, enslaves the behaviour of all 
elements. In other words, the symmetry between the possible modes is broken down 
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to one dominating pattern. This is called symmetry breaking. Such processes of spon-
taneous order formation are very common phenomena, e.g. in the context of group 
dynamics, where after a storming phase norming sets in (Tuckman 1965). 

As mentioned above, self-organisation, which here means the development of an or-
der parameter, can only occur in open systems (Prigogine calls them dissipative systems, 
Prigogine 1955), where a continuous energy flow through the system is possible. Such sys-
tems are provided with energy from their environment and are able to emit useless unor-
dered energy (called entropy) back to their environment. The energy flow through the sys-
tem is regulated by so-called control parameters. Self-organisation only sets in beyond a 
critical threshold of energy. Moreover, a system often has several energy thresholds, and 
every border crossing results in qualitatively different order parameters. 

A lot of studies based on this framework has shown self-organisation in different 
fields of natural science like biological processes (e.g. Deutsch 1994), processes in the 
human brain (e.g. Freeman/DiPrisco 1986; Freeman 2000); but such pattern forma-
tion can also be identified in psychological processes (e.g. Stadler/Kruse 1990; 
Stadler/Haynes 1999). Self-organisation is a much more common phenomenon than 
one may expect. One example of self-organisation and phase transition that is very 
easy to reproduce involves simultaneous finger movements. While it is not very diffi-
cult to slowly move both index fingers parallel from the left to the right, increasing the 
speed produces a discontinuous transition in movement. Beyond a critical speed the 
finger movement switches to an anti parallel (symmetric) movement. This transition 
can be described as a phase transition. Mathematical models (HKB-Equation – Haken 
et al. 1985) are able to simulate this process and have stimulated some hypotheses and 
further experiments concerning the influence of critical fluctuations at the transition 
point. Processes of energy-induced phase transitions are possible explanations for 
phenomena in organisational behaviour, too. For example, if a company faces aggres-
sive demands concerning profits by powerful investors, it may start to show a com-
pletely different behaviour pattern (e.g. communication, culture, basic processes), even 
without undergoing any structural changes. Like phases in synergetics, such patterns 
are often fairly resistant against fluctuations or direct interventions, as is evidently de-
scribed by Lewin (1997/1948/1951), who sees phenomena like phase transitions as a 
process where a stable pattern has to be “unfrozen” first, and a new, changed pattern 
has to be “refrozen” afterwards (cf. Beisel 1996). 

Spontaneous order formation and symmetry breaking are a key feature in human 
perception, too. Human perception is not a passive projection of stimuli into some ar-
eas of our brain. It has much more of an active self-organising process, by which the 
percept is built up in mind, sometimes by using stimuli more as a perturbation than as 
a given fact. Figure 1 illustrates how the perceptive system fails to identify a stable pat-
tern as it is unable to reach a final symmetry breaking. Gestalt psychologists of the 
early 1920s already proposed many laws as to how the human perception “invents” 
the outer world instead of simply reproducing it – synergetics’ approaches to percep-
tion can be seen as a methodical as well as theoretical enhancement of these concepts. 
The idea that perception is not just a trivial but rather a highly complex process of a 
self organising system which can hardly be put down to simple rules is also supported 
by studies that have shown that many medicine students are very good at citing the 
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rules of how to interpret an X-ray picture but fail when actually asked to do so. On 
the other hand, experts with years of experience are extremely skilled in interpreting 
X-ray pictures, but if asked about their methodology, their explanations will be mostly 
rubbish. Despite their high level of skill, they do not know any more how they do it 
(Stadler/Haynes 1999). 
Figure 1:  Instability in the visual perceptive system  

(Figure from: Stadler/Kruse 1990 1990: 36) 

 
 

2.4 Phase transitions 
The qualitative shift in order parameters occurring after a crossing of an energy 
threshold is called a phase transition (in mathematics phase transitions are termed 
bifurcations). Among others, four aspects of phase transitions are very interesting: 

First, phase transitions are radical qualitative changes in temporal pattern forma-
tion occurring in the same system without structural changes. This means that one 
system often has the potential to generate many different behavioural patterns by self-
organisation. Therefore, one explanatory model (which need not even be very exten-
sive) is able to describe various operation modes of a system. 

Second, phases that are far from a transition point form a stable self-organised 
pattern, similar to the way a feed-back control system works, always checking and 
regulating its output towards a certain value. In such a state, the system is fairly resis-
tant to external perturbations. Thus, self-organisation leads to the formation of a be-
haviour pattern (or several patterns) the system is attracted to. Accordingly, these 
“preferred” patterns are frequently called attractors. 

Third, synergetics provides tools that are able to identify possible order parame-
ters (attractors) for mathematical systems, whereas one empirical “real life” system 
may have a great variety of possible order parameters without the possibility to iden-
tify all of them. Therefore, a complete description of all potential states is not always 
possible for these systems. 

Fourth, control parameters are specific yet unspecific (Schiepek/Strunk 1994) for 
the nature of a phase transition. On the one hand, they are necessary and therefore a 

https://doi.org/10.5771/0935-9915-2004-4-481, am 05.08.2024, 05:28:23
Open Access –  - https://www.nomos-elibrary.de/agb

https://doi.org/10.5771/0935-9915-2004-4-481
https://www.nomos-elibrary.de/agb


488  Guido Strunk, Michael Schiffinger, Wolfgang Mayrhofer: Lost in Transition? 

specific reason for a transition. On the other hand, the preferred behaviour patterns 
(attractors) on both sides of the energy threshold are self-organised order parameters 
of the system. The concrete behaviour is neither determined by the supplied energy 
nor by changes in the control parameters, but by the system itself. Therefore, a con-
trol parameter has no specific influence on the concrete manifestation of a system’s 
behaviour. 

2.5 Illustration: Self-organisation, perturbation and enslavement 
Using an example from language can illustrate various aspects that have been ad-

dressed above, especially the self-organised interplay of micro and macro level (see 
Haken 1979: 8). 

The following letters make no sense at all when read as a word or sentence: 
a, a, h, i, i, m, n, s, s, t 

These letters can be seen as elements of a system (the micro level), and by rearranging 
them we can find out about the system’s degrees of freedom. If the letters were writ-
ten on dice and put into a box, we could get many different combinations by shaking 
the box and emptying it onto a table several times. Although the process of shaking 
and shuffling can be seen as a control parameter, no self-organisation takes place. It 
might occur momentarily that the dice are arranged in a way so that the sequence of 
letters makes sense, but the next shake immediately destroys this meaningful se-
quence. In this scenario, there is no system at all, as there are no interdependencies 
between the letters. On the other hand, given the same letters in scrabble one is able 
to arrange the letters to form sentences like the following: 

“this is a man” 
On the micro level nothing has changed, there is just another arrangement of the let-
ters, which is but one of a whole lot of possible arrangements. The difference lies in 
the macro-level pattern, which now makes sense. The letters have acquired a new 
quality, an order parameter. The scrabble player, who knows about relationships be-
tween the letters, and operates in interplay with the letters as a feedback control sys-
tem, (hopefully) produces an entirely different result compared to the sequences ob-
tained by simply shaking the dice. 

At the very beginning, many modes are possible. The player may first arrange the 
word “man” and if she likes it, this mode becomes dominant in the sense that it limits 
the degrees of freedom for the remaining elements of the system, making the order 
parameter show its effect step by step. But there are other meaningful arrangements 
than the one above, such as: 

“is this a man?” 
This new sentence illustrates that the same system is able to produce different order 
parameters. Both sentences are built by the same letters (even the same words, actu-
ally), but two equally sensible outputs may be produced just by deciding in favour of 
one of them. This phenomenon is called symmetry breaking. Every time a system 
finds itself “at the crossroads” and must opt for one among several equally attractive 
possibilities of future behaviour, the symmetry between the opportunities must be 
broken. The outcome of this is frequently determined by random (“I haven’t got the 
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faintest idea where I’ll end up with that, but I’ll just try X”). A system at such a point 
“just before the crossroads” is called critically instable. In its history, a system passes 
an enormous amount of such “junctions”, so the way the system develops in time be-
comes more and more an interplay of random fluctuations and self-ordering and can-
not be predicted. Therefore, such systems build up their own “private” history. 

Apart from order parameters and states of critical instability, this example may 
also be taken to illustrate the resistance of a system against minor perturbations. Once 
the sense of the sequence is obvious to us, even small perturbations (such as a mis-
print) won’t force the scrabble player to get back to square zero or start with random 
sequences again. Furthermore, once the meaning of the sentence is known, the ar-
rangement of the letters is only a consequence. The macroscopic order parameter 
(perceived meaning of the sentence) “enslaves” the process of arranging the letters. 

3. Organised complexity 
The former sections were an attempt to describe some basic concepts in synergetics, 
focusing on the mechanisms that lead to phenomena of self-organisation, especially 
the processes of circular causality between the behaviour of elements on a micro level 
and the collective system behaviour. However, the patterns of behaviour themselves, 
which complex self-organised systems may exhibit, have not yet been addressed. 

Self-organisation on the level of a system’s behaviour means the formation of or-
ganised dynamic structures, i.e., of ordered patterns. While simple, easily predictable 
behaviour is a characteristic of trivial systems, self-organisation becomes manifest by 
highly complex yet ordered behaviour patterns. 

The sequence of letters “this is a man” appears much more complex than the al-
phabetically sorted “original” sequence. The sequence of symbols of which this article 
consists is highly complex, and this is what makes this article appear meaningful and 
organised. Sorting the letters of this text alphabetically would result in a scarcely com-
plex and trivial pattern that could as easily be produced by a simple program and any 
PC as a random shuffling of the letters. It is the well organised but nonetheless com-
plex sequence of letters, “between” a random sequence and a trivial, simple one (con-
sisting of the same elements!), that gives evidence of an “intelligent”, purposeful proc-
ess of self-organisation. The distinction between random, trivial and complex order is 
the core concept of empirical research about self-organisation, which shall be ad-
dressed in the following sections. 

3.1 Conceptual foundations 
The most popular issue in modern system theories is so-called deterministic chaos. De-
terministic chaos denotes a (seemingly) random behaviour occurring in a deterministic 
system (Stewart 2002: 12). Chaos appears to be random because there is no evident or-
der in what a chaotic system does, like there seems to be no order in the successive 
decimal places of the square root of two (1,4142135623730950488016887242097…). 
Additionally, in a chaotic dynamic no periodicity can be found (just as there is no re-
curring periodicity in the square root of two), which suggests a complete lack of rules 
and patterns. But chaos is actually all but without a pattern, because it is the dynamic 
behaviour of a deterministic system; just as the square root of two is not a random 
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number but strictly determined. Chaos is a complex form of dynamics – much more 
complex than simple periodic rhythms, but nevertheless it follows a certain order and 
is therefore far from being random. Deterministic chaos is actually a very common 
self-organised behaviour. 

Apart from the features of deterministic chaos already mentioned, chaos is best 
defined by the so called butterfly effect. Even very small differences between two pos-
sible actual states of a chaotic system increase exponentially in time, which makes it 
impossible to predict the behaviour of a chaotic system for a longer period of time. 
Nevertheless, the system does not alter its basic pattern. To give an illustrative exam-
ple: it is the interplay of such small fluctuations and a chaotic system that forms the 
differences in the shapes of plants, too – the leaves of a certain plant species are often 
largely different in detail but are nonetheless similarly shaped. 

However, chaos is only one possible behaviour of a special class of systems. First, 
chaos can only be found in systems far from thermodynamic equilibrium. This is true 
for all living systems and also for many non-living systems. Second, chaos is based on 
the interplay of more than two variables. While positive feedback systems are vicious 
circles, and negative feedback systems are the core of an equilibrium system, chaos is 
based on mixed feedback (an der Heiden/Mackey 1987). Finally yet importantly, there 
must be at least one mathematically non-linear term describing the relation between 
the variables. Systems built up only by linear interactions are not able to behave cha-
otically. All in all there are only few requirements for a chaotic motion. Therefore, 
chaos is quite likely to be found in various systems. 

Sometimes in popular management literature, chaos is valued as undesired and 
problematic. Nevertheless, seen from a theoretical standpoint, chaos is the only dy-
namic which is adaptable and flexible (due to the butterfly effect), without totally los-
ing its pattern. Organisational change processes, learning organisations and organisa-
tion flexibility in the context of new organisational forms are only understandable in 
the context of self-organisation. Neither a feedback-control-system nor a classical me-
chanical system is able to adapt its behaviour. Also in medicine, the search for chaos 
shows that health is linked to chaotic processes and not to regularity. Within certain 
limits high heart rate variability, for instance, (in contrast to a rigid periodicity) is a 
very good predictor for the positive outcome of cardiac diseases (Skinner et al. 1990). 
The heart rate has to be adaptable and flexible on the one hand to respond to chang-
ing environmental requirements, but on the other hand it must have a functional pat-
tern that ensures, e.g., a good coordination of the heart muscle contractions. In addi-
tion, chaotic processes dominate the EEG of an awake person (Pritchard/Duke 
1995), and a reduction in complexity is often linked to illnesses like epileptic seizures 
(Sackellares et al. 2000). On a socio-psychological level, chaos plays a fundamental 
role in adapting, innovating and negotiating the complex patterns of interactions in 
working groups (Schiepek et al. 1995a; Schiepek et al. 1995b). 

Synergetics offers a concrete and applicable framework to handle other dynamical 
patterns beyond chaos, too, and to explain the transitions between such patterns. As 
far as the interest in organisational behaviour is associated with the characterisation 
and understanding of processes, theories on dynamical systems, such as synergetics, 
are very potent frameworks to cover all aspects of organised complexity.  
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However, empirical research in the field of complex systems often faces limita-
tions rooted in the system’s behaviour itself. For example, it is very hard to answer 
even easy questions like the one concerning the similarity of two given dynamics. In 
the case of chaotic behaviour, this question cannot be answered by linear correlation. 
Because of the butterfly effect even the dynamics of completely identical systems di-
verge exponentially. 

Methodologically, there are two basic approaches to research in the field of dy-
namical systems. One approach (bottom-up-method) takes a “real-life” system as a 
starting point and attempts to describe its behaviour by selecting, operationalising, and 
measuring the relevant variables and parameters (put in a very simplified way). The 
other approach starts from theory and uses mathematical formalisation to build an 
equation system. Mathematical analysis and computer simulations of the equation sys-
tem’s behaviour then give insight into the self-organising processes. The latter “top-
down” approach is typical for synergetics, introduced by Hermann Haken (e.g. 1990). 

Both these methodological approaches (bottom-up and top-down) are bound to 
very specific methods and algorithms (for an overview on bottom-up methods see 
Hegger et al. 1999; Schreiber 1999) and both aim at generating time series containing 
complex dynamic patterns (cf. Schiepek/Strunk 1994). Ideally, top-down and bottom-
up approaches are both used for a reciprocal comparison (see Figure 2 adapted from 
Schiepek/Strunk 1994: 95). Nevertheless, approaches using either the way of theoreti-
cal modelling or the way of time series analysis are rewarding as well. In the following 
section we will give a brief description of some methods for nonlinear time series 
analysis. 

3.2 Algorithms to measure complexity 
Theories on dynamical systems offer a broad spectrum of statistical and mathematical 
tools in order to obtain precise quantitative measurements of complexity, order, de-
terminism, and chaoticity. Most of these algorithms have been developed in the last 20 
years, frequently based on older precursors. In the following section we will give a 
brief overview over five different methods. The first three of them are relatively easy 
to implement and can also be applied with nominal data. The fourth algorithm repre-
sents a class of complexity measurements based on the concept of fractal geometry. 
The fifth class of algorithms presented here are quantifications of the chaoticity of a 
process: 
1. Classical Information Theory: One standard method to determine the complexity of a 

sequence of events or symbols is Shannon’s definition of the information content 
(Shannon 1948). According to this definition, the information content of a se-
quence of values is equal to the sum (over all values) of the probability of the ap-
pearance of one value, multiplied with the logarithm of this probability: 

Equation 1: ∑
=

−=
N

i
iis sPsPI

1
).(ln)(  

Consequently, the information content of a series of symbols can be calculated by 
its frequency distribution. For the sequence “this is a man”, the information con-
tent can quite easily be calculated according to Equation 1 and amounts to 1.89.  
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Figure 2:  Systemic Methodology (Adapted from Schiepek/Strunk 1994: 95f.). 

 
 

In contrast, the equally long but less complex sequence “th th th th th”, yields a value 
of only 0.7, due to the redundancies in the latter series. Although Shannon’s equation 
is one of the most widely used measurements on information content, it has some se-
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rious shortcomings, one of the most important lying in the fact that any sequence 
containing the same symbols as the example presented above yields the same result. 
So, “this is a man”, and “I mash satin” have the same information content. 

2. Symbol Dynamics: Because of these shortcomings of classical information theory 
concerning an accurate measurement of the complexity of ordered patterns, we 
face the question of how the idea of information content can be extended to tak-
ing the ordering of a symbol sequence into account. One solution proposed for 
this problem is the so-called symbol dynamics concept (for an overview see 
Collet/Eckmann 1980), which is originally based on Hadamard (Hadamard, 
1898), and was enhanced by Hedlund and Morse (Morse 1921; Morse/Hedlund 
1938). Symbol dynamics offers a set of different methods to deal with organised 
complexity. A common one is to build up a frequency distribution not only for 
single symbols but for so called words, consisting of a given number of m symbols. 
With m = 2, the sentence “This is a man” can be broken down into nine two-
letter “words”: “Th, hi, is, si, is, sa, am, ma, an”. Afterwards, equation 1 can be 
used to calculate the information content using the relative frequency of the 
words. For longer series of symbols, this approach produces different informa-
tion content values for the given series (“This is a man”), its sorted variant (“a a h 
i i m n s s t”), and a randomly shuffled version (“a t s i m a s i n h”). But informa-
tion content depends on the length of a word, so it is useful to restart the calcula-
tion with larger m (including more letters). If a series is sufficiently long and one 
can find no significant difference to an equal distribution of the relative frequen-
cies of words for different m, the series is probably the result of a random process 
(such as shaking dice in a box, see above). 

3. Algorithmic Entropy: The fundamentals of algorithmic entropy are based on work 
in the field of algorithmic information theory (Kolmogorov 1965; Zvonkin/Levin 
1970; Chaitin 1974), which determines the information content of a sequence of 
symbols by the information content necessary to completely describe the se-
quence. The square root of two, for example, is a number with infinitely many 
decimals that produce an extremely complex sequence of digits. Nonetheless the 
square root of two can be calculated using simple algorithms. Algorithmic infor-
mation theory is based on these ideas, assuming that a rather simple algorithm is 
able to describe complex structures. Sequences that show patterns of ordered 
complexity can normally be put down to simpler algorithms, but in the case of a 
random sequence, the necessary algorithm is just as complex as the sequence it-
self, and maximum algorithmic entropy is attained (Hubermann/Hogg 1986). 
Software that is used for file compression works on a similar basis – the com-
pressed file is an algorithm that is able to reproduce the original file. The ratio of 
compression indicates how ordered the original data are. Random data can not be 
compressed, whereas highly ordered series of symbols are very suitable for com-
pression. The so-called Grammar Complexity is an example for such a compres-
sion algorithm (Jiménez-Montano 1984; Rapp et al. 1991). One way of interpret-
ing results from Grammar Complexity consists in generating many sequences that 
consist of the same elements as the original sequence but are randomly shuffled. 
The Grammar Complexity values for these surrogate series are normally distrib-
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uted, allowing testing the complexity of the original sequence against that of the 
random surrogates. Unlike Shannon’s algorithm presented above, the Grammar 
Complexity does differentiate between more and less ordered patterns. 
The Grammar Complexity procedure has already been employed successfully in 
social sciences (e.g. Rapp et al. 1991; Tschacher/Scheier 1995). Its shortcomings 
are that both the length of the examined sequence and its distribution of values 
influence the results. Along with Grammar Complexity, other algorithms have 
been proposed that are also based on methods of data compression (for a com-
parative overview, see e.g. Schürmann/Grassberger 1996). 

4. Strange Attractors: It was in 1971 when Ruelle and Takens termed the complex 
structure of a chaotic attractor strange attractor. Its geometric properties are very 
different from well shaped Euclidian forms (such as circles, squares, cubes etc.). 
It is the concept of fractal geometrical forms, introduced by Benoît B. Mandel-
brot, which helps to handle such complex, “broken” but nevertheless ordered 
structures. Ruelle and Takens postulate that whenever an attractor can be shown 
to be a fractal, the underlying system is chaotic. 
The basics of fractal geometry (e.g. Mandelbrot 1987) were already formulated 
early in the 20th century by mathematicians like Hausdorff and Besicovitch 
(Hausdorff 1919; Besicovitch/Ursell 1937) and are based on concepts of a body’s 
dimensions. The following example shall illustrate the basic concept: in order to 
measure the length of a straight line with an item (e.g. a ruler) that is only half as 
long as the line, the item will have to be applied twice (three times respectively if 
the ruler is only a third as long as the line, etc.). In order to determine the area of 
a square with a side length of k by using a square with a side length of k/2, one 
would need four such squares to cover the whole area of the former square. Ap-
plying the same principle in order to determine the volume of a cube with a side 
length of k by smaller cubes with a side length of k/2, one would need eight such 
cubes to “fill” the original cube. If the side length of the “measuring” items were 
k/3, one would need nine squares and twenty-seven cubes respectively. So if the 
length (or side length) of the original form is x times the length of the “measur-
ing” item, one needs x1 items to measure length, x2 items to measure area, and x3 
items to measure volume. The exponent thus always corresponds to the dimen-
sionality of the object in question. However, this is not the case for a fractal, as 
Mandelbrot has shown by using the example of a coastline. If one measures the 
length of a coastline with a “long ruler” (i.e., one that spans the beeline between 
two points), then breaks the ruler into x smaller pieces and measures the length 
of the coastline (not the beeline distance between the two points) again, one will 
“run out of ruler” way before the end point is reached, due to the complex struc-
ture of the coastline that “unfolds” as the ruler pieces used to measure the length 
of the coastline become shorter. The number of pieces necessary to measure the 
length of the coastline is therefore larger than x, but remains smaller than x2. The 
dimensionality of the coastline is therefore higher than that of a line but lower 
than that of an area (and therefore obviously not an integer number). The more 
complex and jagged the coastline, the higher its dimensionality. Put in a very sim-
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plified way, whenever a form has a higher dimensionality than would be expected 
and its dimensionality is not an integer number, it is a fractal. 
A successful determination of the fractal dimension of an empirically given dy-
namic allows drawing the following conclusions: First, the higher the fractal di-
mension of a dynamic process, the higher its complexity. Second, if the fractal 
dimension of a process derived from empirical data can be determined, the proc-
ess in question is not a random process (random has no structure at all). Third, 
the fractal dimension rounded up to the next integer number specifies the mini-
mum number of independent but interacting factors the system needs to generate 
its dynamics. Several methods have been proposed to determine the fractal di-
mension of a time series (e.g. Grassberger/Procaccia 1983b; Grassber-
ger/Procaccia 1983a). What all these methods have in common is that they theo-
retically require an infinitely long time series for a reliable calculation. Even 
though about 1.000 sampling points are generally regarded as a small yet suffi-
cient number for attractors of a low fractal dimension (for a controversial discus-
sion about this topic see Tsonis 1992), this is still a hard requirement for behav-
ioural science. 
Another feature of this method is that it aims at generating a representation of an 
attractor in phase space. The term “phase space” stands for a coordinate system 
where the variables that affect the system (regularly the degrees of freedom) form 
the coordinate axes. However, there is only one time series available at the outset 
with which the phase space has to be constructed. A solution for this problem is 
provided by Packard and Takens (cf. Packard et al. 1980; Takens 1981), who pro-
posed a theorem according to which the whole phase space can be reconstructed 
via one single time series. Their method is based on choosing a constant time lag 
(this method is therefore known as time lag reconstruction) that determines to 
which dimension each sampling point is assigned. The value of the first sampling 
point of the time series is assigned to the first dimension of the phase space. The 
value of the sampling point after one times the time lag is assigned to the second 
dimension, the value of the sampling point after two times the time lag is assigned 
to the third dimension, and so on. If the time lag is well chosen, the reconstructed 
attractor in phase space is topologically equivalent to the attractor of the underlying 
system. Several methods have been proposed to find an appropriate time lag for the 
reconstruction of the attractor (cf. Fraser/Swinney 1986; Tsonis 1992). 

5. Measuring the Butterfly Effect: Since the work of Grassberger and Procaccia (1983b; 
1983a) a lot of publications have shown the fractal structure of a broad variety of 
processes. But not all of them are actually chaotic. The calculation of fractal di-
mension still leaves some methodological problems, since it is an appropriate 
method of calculating the complexity of a time series, but not for the detection of 
chaos (e.g., due to the limited length of the time series). Measurements of chaos 
(or more precisely: chaoticity) are based on an operationalisation of the butterfly 
effect. Like for the fractal dimension of strange attractors, algorithms for calculat-
ing the butterfly effect are also based on a phase space representation of the time 
series in question. For every point in phase space an algorithm searches for the 
nearest neighbour. The difference between the reference point and the nearest 
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neighbour can be taken as the flap of a butterfly’s wing. Chaos can be found by 
following the trajectories of the reference point and its nearest neighbour. If the 
system is chaotic the two trajectories diverge exponentially in time (butterfly ef-
fect). An algorithm of Rosenstein et al (1993) does this for each reference point, 
and if the “averaged butterfly effect” still shows an exponential divergence, the 
system’s dynamic is chaotic. The exponent which describes the degree of diver-
gence is called Largest Lyapunov Exponent. 

4. The complexity of careers – an example 
We would now like to demonstrate how the methods and theoretical assumptions of 
theories on dynamic systems are helpful not only in physics but also in organisational 
behaviour by presenting an example from career research where methods stemming 
from chaos research were applied to data on career paths. 

4.1 Complexity hypothesis 
While the field of activity of career research was until quite recently almost exclusively 
limited to careers within organizations (e.g. Becker/Strauss 1956; Super 1957; Glaser 
1968; Hall 1976; Schein 1978; Gunz 1989), a different type of careers is now appar-
ently gaining more and more theoretical as well as practical relevance. It is marked by 
numerous transitions between jobs, organisations, or fields of professional activity, a 
lack of institutionalised and “ordered” career paths and/or career rules, and the fact 
that it is almost solely up to the individual actor to take care of his or her career, with 
little or no external support. This results in a less stable, less predictable career path 
labelled for instance as “boundaryless career” (Arthur/Rousseau 1996), “protean ca-
reer” (Hall 1996), “post-corporate career” (Peiperl/Baruch 1997), or “chronic flexibil-
ity” (Mayrhofer et al. 2000). 

Regardless of one’s enthusiasm for the idea of a radically changing career environ-
ment, common wisdom has it that careers nowadays are more erratic and diverse than 
they were several decades ago. This claim of increased career complexity can be labelled as 
“complexity hypothesis in career research”. In spite of an increasing number of papers 
that postulate such an increasing complexity of careers, there is a lack of methodological as 
well as theoretical concepts that offer a sound operationalisation of the term “complexity” 
in career research. In addition, relating empirical research is largely missing. We have tried 
to bring career research and synergetics together by applying methods from non-linear 
time series analysis in order to investigate the two following questions: 
1. Are professional careers in the 1990s more complex than they have been in the 1970s?  

This question addresses the issue of increased complexity of more recent careers 
compared to those that have begun earlier. It shall be shown that careers, con-
ceived as dynamic processes, in a strict and mathematically formalised sense are 
indeed more complex in the 1990s than they have been in the 1970s. 

2. Are these “new careers” complex or random processes?  
If “new careers” turned out to be random processes without any order, any the-
ory to explain these career paths would be useless. It shall therefore not only be 
analysed whether careers have become more complex, but also whether they are 
deterministic and therefore distinct from random processes. 
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4.2 Sample 
Empirically, we use data from the Vienna Career Panel Project (ViCaPP). Since 2000, 
ViCaPP has collected data on the careers of Austrian business school graduates. The 
analyses are based on the first 13 career years of 95 graduates who completed their 
studies around 1970 and 120 graduates who did so around 1990. Based on a curricu-
lum-vitae-like list of professional activities for each person, their professional devel-
opment was charted for each year since their graduation along several variables with a 
sampling frequency of one year. The following analyses are based on five time-series 
per person, representing her/his career patterns in time. Based on Mayrhofer et al. 
(2000) three of the five variables are based on a concept named the coupling dimen-
sion (how tightly linked and mutually dependent actors are in their career-related ac-
tions and decisions) of career field theory. Coupling was operationalised by the follow-
ing three items: 
• Security and calculability of career-related prospects (very secure vs. very precarious). 
• Subjection of career-related prospects to specific external actors and/or con-

straints (very dependent vs. completely independent). 
• How easily another adequate job could be found should the need arise (very eas-

ily vs. not at all). 
The other two time series refer to instability and variation in actors’ professional 
relationships and job content. This concept is also based on Mayrhofer et al. (2000) 
and is called the configuration dimension. Configuration was represented by the fol-
lowing two items: 
• Stability of work content (very stable vs. ever-changing) 
• Stability of professional relations (very stable vs. ever-changing) 
A factor analysis results in a two-factor solution (as proposed by the underlying the-
ory), which explains about 60% of the total variance. 

4.3 Methods from systems theories 
Before applying two of the methods from chaos research presented above, the two re-
search questions shall briefly be discussed from a “traditional” methodological stand-
point, showing the potential as well as the limitations of consuetudinary methods. 

For example, career complexity could also quite easily be assessed by calculating 
the means of the items measuring configuration. These results actually suggest that the 
persons from the 90s cohort report less stability concerning both work content and 
professional relationships. However, effect size is only marginal (3% of variance ex-
plained) and becomes significant solely due to the large n (annual measurements over 
13 years times 215 participants). The other three variables do not actually address ca-
reer complexity, making their mean values appear of little benefit. Another possible 
approach would consist in taking the changes in standard deviation as an indicator of 
increasing or decreasing career complexity. However, these results show that for three 
out of the five variables the standard deviation is larger in the 70s cohort than in the 
90s cohort. But finally neither mean value nor standard deviation tell us anything 
about whether the career paths of the two cohorts differ concerning order and com-
plexity from a dynamical perspective. 
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Two methods already discussed above stemming from chaos research have been 
applied in order to analyse the complexity of the collected data on career paths. On 
the one hand, the dynamic complexity of the career paths regarding hidden structures, 
such as recurring patterns, is analysed via Grammar Complexity (Jiménez-Montano 
1984; Rapp et al. 1991). On the other hand, a method for the determination of fractal 
dimension of time series is used (Grassberger/Procaccia 1983b; Grassber-
ger/Procaccia 1983a). 

Algorithmic Entropy – Grammar Complexity 
Two indicators were calculated for each person in order to analyse the algorithmic en-
tropy. The first one is the quotient of the Grammar Complexity value of the original 
time series divided by the Grammar Complexity value of the same time series sorted 
in ascending order. The higher the quotient, the more complex the observed se-
quence. 

The second indicator is based on the test of surrogate sequences already outlined 
above. The Grammar Complexity value for the original sequence is compared to a dis-
tribution of Grammar Complexity values for 200 randomised surrogate sequences 
consisting of the same elements. 

Correlation dimension 
Contrary to Grammar Complexity, correlation dimension – coming from fractal ge-
ometry and related to the discussion about strange attractors – makes use of the addi-
tional information provided by interval scaled data, compared to nominal symbol se-
quences. However, it has stricter standards concerning the required length of the ex-
amined time series, which also depends on its complexity. While several hundred 
sampling points are sufficient for moderately complex time series, highly complex sys-
tems require several thousand sampling points for this method to be applied. 

Therefore, the individual time series were added up here to form a quasi-time se-
ries of sufficient length. In order to examine whether the specific complexity found 
for this resulting time series is actually due to the dynamics of the process and not to 
the order in which the original time series were added up, 100 (differently assembled) 
quasi-time series were examined for each cohort. 

One crucial feature of this method is the distinction between a chaotic and a ran-
dom process – the latter can be clearly identified by an infinite fractal dimension. Ac-
cordingly, a finite fractal dimension for the quasi-time series (in different “assem-
blies”) would imply that the time series are deterministic (and that the process dynam-
ics for the single persons are quite similar). In order to simplify the calculation, just the 
two underlying dimensions (coupling and configuration) are used as sources for the 
quasi-time series by taking the means of the two and three items assigned to configu-
ration and coupling, respectively. 

4.4 Results 
Increasing complexity? 
The results for the first indicator, the mean quotient Grammar Complexity values for 
the two cohorts, are presented in Figure 3 and Table 1. It is apparent that the values 
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scarcely exceed the theoretical minimum of 1, which is largely due to the limited sensi-
tivity of this method in the case of short symbol sequences (cf. Rapp et al. 1991).  
Figure 3:  Grammar Complexity quotient for the two cohorts and observed periods 
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Table 1:  Comparison of the Grammar Complexity quotients 
Straight vs. Com-
plex 

 70s cohort 90s cohort 

Dimension Period mean standard 
deviation N mean standard 

deviation N T-Test 
(1-tailed) 

Coupling    95   120  
First  
13 years 1.0130 0.0391 1.0289 0.0721  * 

Career security and 
calculability Last  

13 years 1.0109 0.0397 last 13 years 70s vs. first 13 
years 90s * 

First  
13 years 1.0086 0.0344 1.0197 0.0552  * Subjection to spe-

cific external actors 
and/or constraints Last  

13 years 1.0174 0.0517 last 13 years 70s vs. first 13 
years 90s ns 

First  
13 years 1.0053 0.0270 1.0157 0.0518  * Ease with which an-

other adequate job 
could be found Last  

13 years 1.0042 0.0197 

 

last 13 years 70s vs. first 13 
years 90s * 

Configuration    95   120  
First  
13 years 1.0104 0.0418 1.0132 0.0485  ns 

Stability of work 
content Last  

13 years 1.0033 0.0211 last 13 years 70s vs. first 13 
years 90s * 

First  
13 years 1.0105 0.0413 1.0227 0.0595  * 

Stability of profes-
sional relations Last  

13 years 1.0135 0.0425 

 

last 13 years 70s vs. first 13 
years 90s ns 

*  p < 0.05 **  p < 0.01 
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Figure 4:  Mean Grammar Complexity values after z-transformation for both  
cohorts 
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Table 2:  Comparison of the mean Grammar Complexity values after  
z-transformation for both cohorts 

Random vs. Order  70s cohort 90s cohort 

Dimension period mean standard 
deviation N mean standard 

deviation N T-Test 
(1-tailed) 

Coupling    95   120  
First  
13 years 0.6575 0.9895 0.3136 1.0791  ** 

Career security and 
calculability Last  

13 years 0.4784 0.8535 last 13 years 70s vs. first 13 
years 90s ns 

First  
13 years 0.7826 1.0212 0.3745 0.9646  ** Subjection to spe-

cific external actors 
and/or constraints Last  

13 years 0.4618 0.8445 last 13 years 70s vs. first 13 
years 90s ns 

First  
13 years 0.5068 0.7862 0.2722 0.9853  * Ease with which an-

other adequate job 
could be found Last  

13 years 0.6417 0.9409 

 

last 13 years 70s vs. first 13 
years 90s ** 

Configuration    95   120  
First  
13 years 0.6295 0.9946 0.5366 1.1797  ns 

Stability of work 
content Last  

13 years 0.4964 0.9305 last 13 years 70s vs. first 13 
years 90s ns 

First  
13 years 0.5936 0.9301 0.2581 1.0540  ** 

Stability of profes-
sional relations Last  

13 years 0.5165 0.9087 

 

last 13 years 70s vs. first 13 
years 90s * 

*  p < 0.05  ** p < 0.01 
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Despite all these limitations, the 90s cohort has higher complexity values on all five 
scales, both when compared to the first and last 13 working years of the 70s cohort. 
For the comparison of the first 13 career years of both cohorts, all observed differ-
ences but one (stability of work content) are statistically significant. The results of the 
calculations of algorithmic entropy suggest that the career paths are indeed more 
complex for the 90s cohort than for the 70s cohort. However, these results should be 
accepted with caution, as the test power of the method employed here is rather poor 
due to the extremely short sequences consisting of merely 13 values. 

The results for the second indicator based on the test of surrogate sequences are 
presented in Figure 4 and Table 2. They show the means of the z-transformed Gram-
mar Complexity values for both cohorts. The higher the value, the more ordered the 
underlying sequence, compared to a random sequence. Additionally, z-values larger 
than 1.96 indicate that the observed sequence is significantly more ordered than a 
random sequence. It is apparent that the results for both cohorts fall short of this 
value. 

Overall, the first indicator suggests that the observed career paths are at least a bit 
more complex than their “most ordered” variant, while the second indicator implies 
that the complexity found in these career paths does not clearly distinguish them from 
a random process. Although both indicators are basically in accordance with the 
“complexity hypothesis in career research”, they both yield rather dissatisfactory re-
sults. On the one hand, the observed sequences only show a very limited complexity, 
on the other hand this limited complexity is not clearly distinct from a random proc-
ess. 

Random or complex? 
Figure 5 shows the two-dimensional embedding for a randomly chosen variant of 
each of the three time series. As was already found for empirical data in social sci-
ences, but also in medicine (e.g. Schiepek et al. 1997), no clearly structured attractors 
could be identified, as opposed to mathematically generated time series. 

A simple order structure cannot be identified with the naked eye, nevertheless the 
phase space embedding for the 90s cohort appears more complex than that for the 
70s. This may (partly) be due to the fact that more points were available from the 
quasi-time series for the 90s cohort than from the first and last 13 working years of 
the 70s cohort (1,560 vs. 1,235 points). Examining the results for the 70s cohort only, 
it is also apparent that the representation for the last 13 years looks less complex than 
for the first 13 years, with the number of points being equal for these two quasi-time 
series. 

The calculations of the fractal dimension via an algorithm called correlation di-
mension (D2, cf. Grassberger/Procaccia 1983b; Grassberger/Procaccia 1983a) con-
firm this impression. As Table 3 shows, a finite fractal dimension could be attained for 
almost all variants of the three quasi-time series. For the first 13 years of the 70s co-
hort, only six variants out of 100 are not distinguishable from a random process. For 
the 90s cohort, the respective number was twelve. For the last 13 years of the 70s co-
hort, all 100 variants reached a finite D2 value. 
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Figure 5:  Two-dimensional embeddings for samples of the three quasi-time series 
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The small number of variants of the quasi-time series that did not attain a finite fractal 
dimension is quite astonishing. Much more clearly than expected, these results suggest 
that the career paths represented by the quasi-time series are not random processes. 
Rather, the results imply that career paths are complex, dynamic structures that can be 
put down to deterministic processes. Furthermore, there are only marginal differences 
between the results for the 100 different calculations which rarely exceed the error 
margin of calculation. 

The D2 dimension for the 90s cohort is higher by about one dimension than that 
of the 70s cohort (see Figure 6 and Table 3). Consequently, while at least four 
interacting variables of a deterministic system are necessary to describe the career 
paths of the 70s cohort, the respective number for the 90s cohort is five. In addition, 
it is apparent that the system formed by the last 13 working years of the 70s cohort is 
less complex than the system formed by their first 13 years. This difference is much 
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complex than the system formed by their first 13 years. This difference is much 
smaller however than that between the cohorts. 
Figure 6:  Correlation dimension (D2) of the three quasi-time series 
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Table 3:  Correlation dimension (D2) of the three quasi-time series 

 70s cohort 90s cohort 

period Mean 
D2 standard deviation N mean standard deviation N T-Test 

(1-tailed) 
First  
13 
years 

3.4004 0.2923 94 4.4611 0.3906 88 ** 

Last  
13 
years 

3.1070 0.2360 100 last 13 years 70s vs.  
first 13 years 90s ** 

*  p < 0.05 **  p < 0.01 

 

5. Significance for the field of OB – opportunities and limitations 
The approaches introduced here are just a small fraction of the methods, tools and 
algorithms currently used and discussed in chaos research. The chosen example – the 
question about the increasing complexity of careers for different cohorts of profes-
sionals as expressed in the complexity hypothesis – illustrates quite nicely the oppor-
tunities, but also the limitations of the contributions that systems theories and related 
methods can make to OB. The propositions in this chapter about the potential contri-
bution of the conceptual frameworks and the methods outlined above build on the 
previous considerations. Theorizing about organizations, conceptualizing complexity 
and quantitative measures of complexity as well as the application to careers bring up 
some points that, in our view, constitute opportunities for progress in OB.  
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First, the use of systems theories as conceptualized in this paper allows OB to 
widen its focus. While the concentration on individuals and their behaviour is more 
than welcome and has greatly contributed to our understanding of processes in or-
ganisations, it has to be supplemented by a broader focus: behaviour in organisations 
is not organisational behaviour. Organisational reality cannot sufficiently be explained 
through the aggregation of individual behaviour and related individual intentions. 
While social systems theory tries to conceptualise the emerging phenomena of the inter-
relation of behaviour of two or more individuals as a construct of its own kind and not 
merely as an addition to individual behaviour, thus overcoming an ultimately individual-
istic perspective, the systems theories presented in this paper take another route. They 
try to get the whole system into perspective and develop various constructs that refer to 
key characteristics of systems: self-organisation, phase transitions, the issue of thresholds 
and the resulting changes in systems’ behaviour, bifurcation, the inclusion of the tempo-
ral dimension are just a few of them. In this way, the use of systems theories helps OB 
to consistently overcome a too individualistic perspective. This is not only an enlarge-
ment, but a new quality because it enables OB to deal with partly neglected aspects of 
OB: the behaviour of organisations, i.e., larger systems instead of just dealing with be-
haviour in organisations. 

Second, the concepts and methods presented here explicitly include the dynamics 
of systems. Thus, the temporal dimension and a change perspective are explicitly inte-
grated into theorising and methods of analysis. In the case of some concepts, this is 
the centre of their contribution. For OB, this is more than welcome. Many of the con-
cepts used in OB are hardly able to cope with the dynamic quality of larger systems. 

Third, the use of systems theories in OB strengthens the link between debates 
within OB and the broader scientific discussion in other disciplines. As systems theo-
ries cover a broad disciplinary background and are applied to a wide range of prob-
lems in different areas, working with such concepts can greatly enhance our under-
standing of the reality OB is dealing with: behaviour in and of organisations. Since a 
great number of people with a great variety of scientific background work with these 
concepts and try to develop them further, a lot of impulses can be gained from these 
discussions that help further development of understanding OB. At the same time, the 
contributions from those different scientific perspectives help to avoid or at least re-
duce blind spots that inevitably develop within the dialogue of a small scientific disci-
pline. 

Fourth, systems theories and related methods as described here avoid major pit-
falls of the earlier usage of these concepts in OB which has been largely metaphorical. 
In terms of gaining theoretical insight into phenomena this is hardly a problem since 
even – or, as some may argue, especially – a metaphorical use of theoretical concepts 
can contribute to new insight. At the empirical level, however, the situation is differ-
ent. At least within an objective, “quantitative” paradigm of epistemology and meth-
odology, the clear conceptualisation of theoretical constructs and its formalised opera-
tionalisation for empirical research is crucial. For the systems theories used in this pa-
per this goes without saying. Largely rooted in natural sciences, mathematics and 
physics, they come from a tradition where operationalisation is a clear “must”. In ad-
dition, mathematical formalisation is also widespread in these approaches. For the ap-
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plication in OB, this has the advantage of avoiding a common trap: leaving “soft” 
phenomena “soft” in the sense of fuzzy in empirical terms, i.e., not being able to 
operationalise and/or formalise core constructs and assumptions within parts of OB. 
We know that acknowledging vagueness because the phenomenon or the knowledge 
that can be acquired about it in itself is vague does no mean being vague. Hence, we 
do not propose greater exactness than the phenomenon allows (in line with Aristotle’s 
famous dictum, see Jonas 1974: 127). However, we are convinced that for some of the 
“soft” issues that OB deals with, more substantial conceptualizations and operationali-
sations can be found than are used today. Of course, some developments in personnel 
economics serve as a warning example not to overstretch it. 

Fifth, introducing theoretical concepts and analytical methods that are able to de-
scribe and quantify OB phenomena in a precise and methodically sound way do not 
only help to gain OB more reputation in a scientific world largely fascinated by 
mathematical clarity. It also has an at least partly healthy effect for the self-discipline 
of research efforts in OB. Well-sounding concepts alone are not sufficient if they can-
not be used in empirical research – at least for some types of knowledge creation. 

Sixth, the possibility to formalise key constructs and assumptions generates some 
connectivity to other dominant paradigms in the more management related parts of 
OB. For example, concepts within the micro-economic paradigm usually have a high 
degree of formalisation making the relationship between the different variables very 
clear. The dialogue between such an approach and less formalised ways of doing em-
pirical research is sometimes made difficult because of the different underlying as-
sumptions about “good science”. While in the conceptual realm these differences sus-
tain when using systems theories as outlined in this paper, the methods used and the 
use of stringent mathematical formalisation which is not metaphorical can help to 
build bridges for mutual understanding. 

To be sure, there are a number of limitations, too. From a theoretical perspective, 
the high degree of abstraction limits the depth of analysis. Likewise, some critics 
would argue that organisations as social systems are a quality of their own. The ele-
ments of such systems – in this view individuals – have a greater freedom of choice 
compared to atoms or other types of non-living systems. Therefore, the unchanged 
application of such theoretical views might encounter difficulties. 

From the perspective of methods, two main obstacles occur. First, the data that 
can be collected within an OB setting will in many cases not meet the standards in 
terms of numbers and time-span covered that are required to successfully apply the 
methods described in this paper. For example, we did not attempt to demonstrate 
here that the observed career paths are chaotic processes in a mathematical sense, as 
this would have to be done via the calculation of Lyapunov exponents for which the 
available data are unsuitable. Second, the methods employed are far less widely used 
than “standard” statistical procedures. This is also reflected in a lack of computer 
software that can perform this sort of calculations. 

6. Concluding remark 
Trying to be innovative in science is always linked with risks: what is innovative in one 
field may be yesterday’s wisdom in another, the standards for evaluating the degree of 
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innovation vary between different observers, or the innovation ultimately does not 
lead to new insight. Nevertheless, as Kurt Lewin once wisely pointed out, it is often 
necessary to break established methodological taboos which ban methods or concepts 
as “unscientific” or “illogical” that later in scientific history have turned out to form 
the basis for a step forward (Lewin 1949, cit.op. Marrow 1977: 23). We do not assume 
that our paper will be worthy of this dictum – but at least it is encouraging to try.  
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